Guidelines for Rescue Services
Passenger Cars

Mercedes-Benz • AMG • McLaren • Maybach • smart
Guidelines for Rescue Services
Passenger Cars
Mercedes-Benz • AMG • McLaren • Maybach • smart
Product Portfolio

Comprehensive information about our full Product Portfolio can also be found at our Internet Portal:
Link: http://aftersales.mercedes-benz.com

Questions and suggestions

If you have any questions or suggestions concerning this product, please write to us.
Email: customer.support@daimler.com
Fax: +49-(0)18 05/0 10-79 78

or alternatively
Address: Daimler AG
GSP/ORR
HPC R822, W002
D-70546 Stuttgart, Germany

© 2012 by Daimler AG
This document, including all its parts, is protected by copyright. Any further processing or use requires the previous written consent of Daimler AG, Department GSP/ORR, HPC R822, W002, D-70546 Stuttgart, Germany.
This applies in particular to reproduction, distribution, alteration, translation, microfilming and storage and/or processing in electronic systems, including databases and online services.

Image no. of title image: P00.01-3447-00

09/2012
Changes compared to 01/2012 issue

Observe modification notes

Mercedes-Benz model classes

<table>
<thead>
<tr>
<th>Model Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Class (model 176)</td>
<td>143</td>
</tr>
<tr>
<td>E-Class Sedan HYBRID (model 212)</td>
<td>151</td>
</tr>
<tr>
<td>E-Class Station wagon HYBRID (model 212)</td>
<td>156</td>
</tr>
<tr>
<td>CLS-Class Shooting Break (model 218)</td>
<td>161</td>
</tr>
<tr>
<td>SL-Class (model 231)</td>
<td>166</td>
</tr>
<tr>
<td>GL-Class (model 166)</td>
<td>174</td>
</tr>
<tr>
<td>Citan (model 415)</td>
<td>179</td>
</tr>
</tbody>
</table>

Note

The model class overviews are also available as "rescue cards" free of charge on the internet. Rescue cards are available for all current passenger car model series as well as for predecessor model series produced in or after 1971 (1995 for campers).
Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>9</td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Proper casualty rescue</td>
<td>10</td>
</tr>
<tr>
<td>Extinguishing vehicle fires</td>
<td>11</td>
</tr>
<tr>
<td>New materials</td>
<td>13</td>
</tr>
<tr>
<td>Refrigerant 1234yf</td>
<td>14</td>
</tr>
<tr>
<td>Body</td>
<td>16</td>
</tr>
<tr>
<td>Rescue</td>
<td></td>
</tr>
<tr>
<td>Securing and supporting</td>
<td>22</td>
</tr>
<tr>
<td>Removing the windows</td>
<td>25</td>
</tr>
<tr>
<td>Switching off the engine</td>
<td>29</td>
</tr>
<tr>
<td>Central locking emergency opening</td>
<td>30</td>
</tr>
<tr>
<td>Removing the vehicle doors • Mercedes-Benz passenger cars</td>
<td>31</td>
</tr>
<tr>
<td>Removing the vehicle doors • Maybach</td>
<td>35</td>
</tr>
<tr>
<td>Removing the vehicle doors • smart</td>
<td>38</td>
</tr>
<tr>
<td>Removing the vehicle roof • Mercedes-Benz passenger cars</td>
<td>43</td>
</tr>
<tr>
<td>Removing the vehicle roof • Maybach</td>
<td>54</td>
</tr>
<tr>
<td>Removing the vehicle roof • smart</td>
<td>61</td>
</tr>
<tr>
<td>Pushing away the instrument panel • Mercedes-Benz passenger cars</td>
<td>68</td>
</tr>
<tr>
<td>Pushing away the instrument panel • Maybach</td>
<td>73</td>
</tr>
<tr>
<td>Pushing away the instrument panel • smart</td>
<td>75</td>
</tr>
<tr>
<td>Special considerations for the SLS AMG (model 197)</td>
<td>79</td>
</tr>
</tbody>
</table>
Mercedes-Benz model classes

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>139</td>
</tr>
<tr>
<td>Sedan</td>
<td>141</td>
</tr>
<tr>
<td>T-Modell</td>
<td>154</td>
</tr>
<tr>
<td>Coupé</td>
<td>157</td>
</tr>
<tr>
<td>Cabrio</td>
<td>163</td>
</tr>
<tr>
<td>Roadster</td>
<td>164</td>
</tr>
<tr>
<td>Geländewagen</td>
<td>170</td>
</tr>
<tr>
<td>Van</td>
<td>177</td>
</tr>
<tr>
<td>Reisemobil</td>
<td>181</td>
</tr>
</tbody>
</table>

Maybach model overview

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>185</td>
</tr>
<tr>
<td>Maybach 57/62</td>
<td>188</td>
</tr>
</tbody>
</table>

smart model classes

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>189</td>
</tr>
<tr>
<td>smart fortwo</td>
<td>191</td>
</tr>
<tr>
<td>smart roadster</td>
<td>197</td>
</tr>
<tr>
<td>smart roadster coupé</td>
<td>198</td>
</tr>
<tr>
<td>smart forfour</td>
<td>199</td>
</tr>
</tbody>
</table>
Contents

Integral safety

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety concept</td>
<td>200</td>
</tr>
</tbody>
</table>

Annex

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>204</td>
</tr>
<tr>
<td>Index</td>
<td>205</td>
</tr>
</tbody>
</table>
Dear Reader,

One of Daimler’s main priorities has traditionally been to guarantee the highest possible standards of safety. For this reason our vehicles always represent the state of the art. And this is especially true for vehicle safety.

Our safety concept is as comprehensive as possible and also extends to providing rescue crews with specific information about our vehicles and their safety systems.

The top priority of the rescue crew is to save lives. The rescue team must be able to gain access to the accident victims as quickly as possible without exposing them or themselves to additional danger.

In order to do this, the rescue services must be properly trained. In addition, knowledge of vehicle-specific accessibility options and of the function and operation of the safety systems is absolutely essential.

Mercedes-Benz has been providing this information in its "Guidelines for Rescue Services" since March 1994. The guidelines have been revised regularly ever since. The constant development of our vehicles, particularly in the field of vehicle safety, and the expansion of our product range have necessitated another update.

These guidelines describe several methods for rescuing accident victims from the vehicle. We must emphasize, however, that these guidelines cannot claim to be exhaustive and on no account should they, nor are they intended to, act as a substitute for proper specialist training and the relevant specialized literature.

The new passenger car vehicle models have been added to these guidelines, which also include up-to-date information on occupant restraint systems, passive and active safety systems, new materials and alternative drive systems.

For their helpful cooperation we should like to extend our warmest gratitude to our company fire brigades at the Sindelfingen, Untertürkheim and Mettingen plants, to the Stuttgart Fire Service, to our accident research department, to our development department, to our company medical services at Sindelfingen, Untertürkheim and Mettingen, and to everybody else involved.

The photographs were taken while performing cutting tests on vehicles of various model series as well as during an exercise series "Technical assistance for passenger cars, proper casualty rescue" of the plant firefighting department at Daimler Sindelfingen, Germany.

Daimler AG
Technical Information
and Workshop Equipment (GSP/OR)
Proper casualty rescue

Whereas formerly priority was given to quickly rescuing the trapped accident victims from their predicament, the primary concern nowadays is medical and psychological assistance. The aim of this is to prepare the casualty as well as possible for the rescue work.

The medical and rescue personnel can then work in concert to free the casualty from the vehicle.

The most important immediate measures at the scene of accident are:

- Maintaining or restoring the vital functions (respiration/circulation)
- Keeping the respiratory passages clear and rectifying any breathing difficulties
- Assessing shock and initiating measures to stabilize the casualty
- Rendering psychological support to the casualty
- Treating life-threatening injuries
- Stopping major bleeding
- Immobilizing certain body parts

Immobilizing the neck

As the head often experiences extreme movements in traffic accidents, there is an increased risk of spinal injury in the neck region. To prevent further damage to the cervical vertebrae, it is essential to immobilize the neck before any further rescue action is undertaken. A cervical collar ("Stifnek") is usually used for this purpose. It consists of a piece of plastic which is placed around the neck and fastened in place with a Velcro fastener.

If access to the casualty is difficult, the head restraint can be removed first before fitting the cervical collar.

NOTE
The main priority is to render medical and psychological aid to the casualty!

NOTE
However, the safety of the medical and rescue crews themselves should not be neglected!

- Wear protective clothing
- Wear eye protection
- Wear protective mouth mask
- Secure the accident vehicle

WARNING
Head restraints should only be removed by cutting them off in exceptional cases and in consultation with the emergency physician.

- Cutting off the head restraints exposes the casualty to additional movements
- The head restraint can no longer be used to stabilize the casualty's head
- Cutting off the head restraints can cause sharp edges
Extinguish fires in accordance with the guidelines of the professional fire services.

Body:

Magnesium is increasingly being used in safety-relevant reinforcement structures in the body. Thus, e.g. the inner door panels on the S-Class coupé (model 215) and SL-Class roadster (model 230) are made of magnesium.

NOTE

Magnesium is a Class D flammable material according to the European "Flammable materials of various kinds" EN2 standard!

Vehicles with fuel cell drive:

Vehicles with a fuel cell drive (B-Class F-Cell) are equipped with hydrogen tanks. On these vehicles the guidelines on extinguishing gas fires, in particular, must be observed.

NOTE

Hydrogen (H2) is a Class C flammable material according to the European "Flammable materials of various kinds" EN2 standard.

Vehicles with gasoline and natural gas drives:

In the E-Class sedan (model 211 and model 212) E 200 NGT and in the B-Class (model 245) B170 NGT BlueEFFICIENCY, engines are used that can be operated with either gasoline or natural gas.

A comprehensive series of tests have shown that the high-strength tanks, lines, threaded connections and other equipment also provide the greatest possible safety in the event of an accident.

The location of the components ensures that the natural gas does not enter the vehicle interior.

The danger of fire is no greater in natural gas vehicles than in gasoline or diesel-powered vehicles.

NOTE

Natural gas is a Class C flammable material according to the European "Flammable materials of various kinds" EN2 standard!
Extinguishing vehicle fires

Restraint systems:

In the event of a fire breaking out in the vehicle interior, the front, side and head/thorax sidebag gas generators or pyrotechnical emergency tensioning retractor may be triggered.

Gas generators are designed to ignite as soon as the temperature inside the gas generator reaches 160-180 °C. In such cases the ignition squib and the solid fuel burn without destroying the gas generator. During combustion a specific volume of gas is released at a specific pressure.

NOTE
If the front, side and head/thorax sidebags as well as the emergency tensioning retractor are triggered the corresponding component will burn in a controlled manner and not explode.

Windowbags

The gas generators of the windowbags are filled not with solid fuel, but with compressed gas.

WARNING
The compressed gas generators of the windowbags must not be cut, as otherwise the compressed gas may suddenly escape!

NOTE
Before cutting the corresponding body panels the inner paneling of the A, B or C-pillars must be removed using a suitable tool and the exact installation location of the gas generators determined!
WARNING

Electrolyte fluid may escape if the **mirror glass is broken**. This fluid acts as an **irritant** and must not be allowed to come into contact with the **skin, eyes or respiratory organs**.

If it comes into contact with the skin or eyes, **immediately rinse off the fluid with generous amount of clean water**. Seek medical attention if necessary.

Automatic dimming mirror:

On the following vehicles the interior and exterior mirrors contain an electrolyte fluid for the automatic dimming function:

- C-Class (model 204)
- E-Class coupé (model 207)
- CLK-Class (model 209)
- E-Class (model 211)
- E-Class (model 212)
- CLS-Class (model 219)
- S-Class (model 221)
- CL-Class (model 216)
- SL-Class (model 230)
- Maybach (model 240)

Vehicles of other model series may also be fitted with automatic dimming mirrors as special equipment (SA).
Refrigerant 1234yf

The refrigerant R134a used in car air conditioning systems today has a high greenhouse effect with a Global Warming Potential (GWP) of 1430. In EC Directive 2006/40/EC it was resolved that in future only refrigerant with a GWP of less than 150 should be used. To satisfy this requirement a new, environment-friendly refrigerant has been developed, which has a GWP of 4. This new refrigerant R1234yf is being introduced from 2011 onwards.

Comparison between R134a and R1234yf

R134a and R1234yf are liquefiable gases in automobile air conditioning systems. Their vapors are heavier than air and sink down under atmospheric conditions. The thermodynamic properties of R134a and R1234yf are similar.

Both substances are hydrofluorocarbons (HFCs). Both are toxicologically harmless.

Identification

Information about the type of refrigerant and the quantity to be used in a vehicle A/C system can be found on the information label, in the owner’s manual or in the repair guide for the vehicle. If these information sources are unavailable, the car manufacturer must be contacted directly to find out which refrigerant to use and in what quantity.
What needs to be considered with regard to work safety when handling refrigerant?

The most important element in ensuring safety when working with both R134a and R1234yf is the wearing of suitable personal protective equipment in accordance with the risk assessment:

- Long-sleeved work clothes
- Leather gloves
- Tight-fitting safety goggles

Certification of competence

Work on air conditioning systems may only be carried out by trained personnel.

Workshop staff carrying out activities connected with A/C systems in motor vehicles must hold a training attestation in the form of a certificate of competence in accordance with Commission Regulation (EC) No. 307/2008 dated April 2, 2008.

No additional certification of competence is required for working with the refrigerant R1234yf.

WARNING

R1234yf is classified by the gas manufacturer as highly flammable.

To prevent the buildup of an ignitable atmosphere, adequate ventilation must always be ensured in accordance with the German trade associate regulation BGR 157. At workplaces where the refrigerant is handled, naked flames and lights, and ignition sources such as arcs from welding, are not permissible and must be kept away.

Storage is described in the following Technical Rules for Gases (TRG):

- TRG 250
- TRG 280
- TRG 310
Mercedes-Benz bodyshell

Materials overview, example shows CL-Class (model 216):

- **A** Low-carbon steels
- **B** High-strength steels
- **C** Modern high-strength steels
- **D** Ultrahigh-strength steel, hot worked (e.g. Usibor)
- **E** Aluminum
- **F** Plastic
- **G** Die-cast magnesium

The type and percentage content of the respective materials in a particular vehicle depends on the model series.

Structural reinforcements in the A-pillars and B-pillars are predominantly installed in coupés, convertibles and roadsters because these parts must be particularly strong on these types of vehicles.

CL-Class bodyshell (model 216)
Maybach bodyshell

The Maybach is a large vehicle which is designed to be very comfortable. The bodyshell of the Maybach must therefore fulfill particularly tough requirements in terms of rigidity, strength, acoustics and vibrational characteristics. For this reason, the bodyshell technology used in the Maybach is different to that used in the current Mercedes-Benz passenger car model series in a number of aspects e.g. more increased-strength steel is used.

The following bodyshell components are made of aluminum to reduce the weight of the vehicle:

- Roof
- Front fenders
- Engine hood
- Doors

The spare tire well and trunk lid are made of plastic.

The proportions of the materials used are listed below:

<table>
<thead>
<tr>
<th>Bodyshell material</th>
<th>Proportion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal deep-drawn panel</td>
<td>39.5</td>
</tr>
<tr>
<td>Increased-strength sheet steel</td>
<td>37.8</td>
</tr>
<tr>
<td>Aluminum and aluminum alloys</td>
<td>17.0</td>
</tr>
<tr>
<td>Plastics</td>
<td>13.2</td>
</tr>
<tr>
<td>Other materials</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Bodyshell of Maybach 62 with partition wall (model 240)
The vehicle structure of the SLR consists of four main sections:

- Front crash structure (1)
- Front frame (2)
- Monocoque (3)
- Luggage compartment cell (4)

The bodyshell, with the exception of the front frame, and the doors and hoods of the SLR are made of corrosion-resistant carbon fiber composite material.

In the SLR McLaren roadster, the A-pillars are reinforced with a pipe made of high-strength steel.
Front crash structure

The front crash structure made of carbon fiber composite material is bolted to the front frame using the two tubular energy absorption elements. The crash absorbers are designed to transform impact energy through the uniform and progressive rearward disintegration of the fiber composite structure into smaller particles, resulting in a controlled and largely constant deceleration.

Front frame

The front frame is made of two separate high-strength aluminum box sections, bolted at the left and right to the monocoque, to which the engine is mounted. The following components are also mounted onto the front frame next along with the engine:

- Radiator
- Front suspension
- Stabilizer
- Exhaust muffler
- Steering
- Front crash structure

Monocoque

The passenger compartment and the fuel tank are surrounded by a safety cell (monocoque). This safety cell is made of carbon fiber composite material. The monocoque consist of several components:

- Hull with integrated engine-transmission-tunnel
- Differential supporting frame
- Door sill
- Single-piece soft top frame with roll-over protection

Luggage compartment cell

As with the front frame, the luggage compartment cell is also bolted to the monocoque. The rear area contains the following components:

- Battery mounting
- Interior ventilation
- Cooler for differential
- Trunk
- Rear suspension

The luggage compartment cell has been designed such that in the event of any rear end collision, the acting energy is then mainly absorbed.

NOTE

On the strength of past experience, vehicle structures made of carbon fiber composite material can be separated or deformed using the usual rescue equipment. The pendulum jigsaw is ideally suited for cutting carbon fiber parts.
Body

smart bodyshell

Materials overview, example shows smart fortwo (model 451)

The bodyshell structure of the new model series 451 exhibits the following features:

- Tridion safety cell with high-strength steels
- Light alloy detachable parts
- Front CMS (Crash Management System)
- Rear CMS
- Pedestrian protection

Silver areas:

The silver areas consist of soft deep-drawing steel of normal strength.

Red areas:

The red areas consist of micro-alloyed high-strength steels.
smart bodyshell

Green areas (cabriolet only):

The green area consists of a martensite-phase steel, which is particularly high-strength and torsionally stiff. This steel is only installed on the cabriolet in the window columns of the A-pillars.
Securing and supporting

⚠️ WARNING

Unintended movements of the bodywork during rescue operations may cause further injury to the accident victims.

To prevent dangerous movements from occurring while rescuing the victims, the vehicles involved should first be secured.

On arrival at the scene of the accident, the first priority of the rescue crew should be to ascertain and assess the condition of the casualties.

If possible, proper rescue of the occupants should only be undertaken when the vehicle has been sufficiently secured and, if possible, in consultation with the emergency physician (does not apply to emergency crash rescue!)

Trapped casualties are in direct physical contact with the accident vehicle. Therefore the supports must guarantee that the vehicle cannot move during the subsequent rescue operations. The vehicle can be lifted using a spreader to create sufficient space for underfloor sliding blocks or wooden blocks.

The support must remain secure throughout the entire duration of the rescue operation and must be able to withstand the use of hydraulic equipment.

The tires should not be punctured nor should the air be let out through the valves to preserve evidence that the police may need to investigate the accident.
NOTE

The actions performed to secure the vehicle (supporting it on wooden blocks, underfloor sliding blocks or similar objects, securing it with ropes, car support systems or endless slings) must enable the casualties to be rescued smoothly and safely. When positioning the underfloor sliding blocks, care must be taken to ensure that the following rescue measures are not impaired.

Vehicles lying on their side must be secured to prevent them from sliding and tipping over e.g. using sectional ladders, wheel chocks, ropes and straps.
- Secure vehicle using sectional ladders
- Attach straps by looping them around vehicle parts, such as axles or other securely bolted or welded parts on the vehicle.
- Attach steel cable to strap and tighten using pulling unit (grip puller) or cable winch
- Secure opposite vehicle side using wheel chocks
Securing and supporting

Passenger car support systems are available as an alternative, with which vehicles can still be stabilized even when in complicated positions.

Endless sling

If the vehicle is on sloping ground, an endless sling is useful for securing the vehicle. It can also be used for recovering the vehicle.

The endless sling should be attached in one of the following ways:

- Guide it through window openings (including when windows have been removed)
- Wrap it around vehicle parts such as axles or firmly bolted/welded vehicle parts

Care should be taken to pass the sling around a number of components if possible, in order to distribute the forces evenly.
Removing the windows

⚠️ WARNING

Work on windows and glass roofs may produce glass splinters which can cause injuries to the occupants and rescuers.

Cover the occupants before commencing work, preferably with a transparent sheet.

Wear protective clothing and gloves and safety glasses.

⚠️ WARNING

Always remove the windows when working on adjacent components.

Windows may shatter resulting in tiny, sharp glass particles flying around which may cause injury to the occupants and rescuers.

Cover the occupants before commencing work, preferably with a transparent sheet.

Wear protective clothing and gloves and safety glasses.

Windows in parts adjacent to those being worked on must always be removed before using hydraulic tools. This applies above all to the windows in the doors. If the windows are not removed, then when opening the doors using the spreader together with the corresponding body panels, they can be subjected to enormous pressure.

At a certain compressive force the windows will be unable to withstand the pressure and will burst suddenly and violently. The ejected fragments can inflict injuries.

Vehicles in the Mercedes-Benz passenger car model series and smart model series are generally equipped with two types of safety glass.

The windshield and door windows are made of laminated safety glass (VSG), the rear and side windows on almost all vehicles are made of single-pane safety glass (ESG).

All of the windows on the Maybach (model 240) are made of laminated safety glass (VSG).
Removing the windows

Removing windows using a glass saw

The glass saw is usually chosen to remove windows made of **laminated safety glass** (VSG).

- First knock a hole in the bottom of the window
- Then saw out the window at the bottom along the door

With a glass saw, the actual cutting occurs on the pull stroke and not on the push stroke as with conventional saws. The advantage of this is that the casualty inside the vehicle is less exposed to the glass particles produced.

- Press the window outwards and pull out of the guide rails

A **pendulum jigsaw** can be used as an alternative for removing laminated safety glass windows.

Here one should note that when sawing, fine-grained **glass dust** is created. For this reason before commencing the sawing process safety precautions must be taken:

- The occupants should be covered preferably with a **transparent sheet**
- The rescue personnel should also wear a **mask** and **safety glasses** in addition to the helmet visor
Removing windows using a spring punch

The side windows on almost all vehicles (except Maybach) are made of single-pane safety glass (ESG) and can be removed using a spring center punch:

- Stick adhesive foil or tape over the window
- Position the spring center punch in one of the bottom corners
- Punch the window with the spring center punch

- The window shatters into small shards which stick to the film or adhesive tape.
- Remove the window outwards
- Remove remaining fragments of glass from the window frame (remove the rubber edge strip)

Glass roof on smart forfour (model 454)

- Stick adhesive foil or tape over the window
- Knock a hole in one of the corners of the glass roof
- Cut out the window along the edge of the opening in the roof using a glass saw
- Remove the window outwards

Both the glass roof and the plastic roof are adhesive-bonded to the body structure.
Removing the windows

Side window on smart fortwo (model 450)

The panes of the quarter windows behind the B-pillars on the smart fortwo (model 450) are manufactured from breakproof plastic (polycarbonate) and are held in place by clips. They can be pried out using a suitable tool, such as a crowbar or Halligan tool.

Removing windows with a Halligan tool:

Laminated glass windows can be quickly and easily removed using a Halligan tool:

- First knock a hole in the window
- Then rip out the window using the tool.

⚠️ WARNING

Before windows are sawn or opened with special removal tools, the occupants must be covered, preferably with a transparent sheet, to prevent any potential risk of injury. Rescue personnel must wear protective clothing, safety glasses and protective mouth masks in addition to their helmet visor!
Switching off the engine

Switching off the engine on vehicles with automatic transmission

Switch off engine by turning the ignition key counter-clockwise to the "0" position and then remove the ignition key.

NOTE

On vehicles with automatic transmission, the ignition key can only be removed if the selector lever is in position "P".

Switching off the engine on vehicles with KEYLESS-GO

KEYLESS-GO is a keyless access and drive authorization system.

In some accident situations the engine may continue to operate after a crash. If the vehicle key is not in the ignition switch in vehicles with KEYLESS-GO, the engine can be switched off as follows:

• Move the selector lever to position "P" or "N"
• Press START/STOP button (1) on selector lever once
Central locking emergency opening

Automatic unlocking of the central locking in the event of an accident

Mercedes-Benz and Maybach vehicles are equipped with the "Central locking emergency opening" function in the event of a crash.

Installed in a separate control unit is an additional crash sensor. At a defined vehicle acceleration the signal for emergency opening is transmitted after a specific waiting time to the door control units. The doors are then unlocked by the respective door control unit.

Hazard warning system

In the event of a crash, the hazard warning system is automatically switched on, depending on the vehicle model.

It can be switched off again at any time using the hazard warning flasher switch.

Generally, the hazard warning system is used to show the rescue team that the vehicle voltage supply is operational.

The hazard warning system is not deactivated until the battery/batteries is/are disconnected. This shows that the vehicle is free of electric current.
Removing the vehicle doors • Mercedes-Benz passenger cars

First check whether the door catch can be opened in spite of the deformed door.

It may be possible to open the door enough to allow the spreader to be pushed into the resulting gap. If the lock cannot be opened, the following procedure is recommended:

NOTE
Do not use excessive force to ram the spreader into the door gap, in order to avoid any unintended movement of the car body. Proceed carefully with the patient in mind.

Opening on the lock side:

- Remove side windows made of single-pane safety glass
- Push one tip of the spreader into the door gap (at about the height of the door lock) on the B-pillar
- Grip the door fold with the spreader and bend outwards
- Press both tips of the spreader into the opening produced, in order to expand the opening in a number of small spreading operations. During this process slide the ends of the spreader toward the door lock, continuing until the door pops open.

Alternative procedure

- Remove side window made of single-pane safety glass
- Insert spreader between door and upper window frame
- Open spreader
- Bend upper window frame outwards using spreader
Removing the vehicle doors • Mercedes-Benz passenger cars

• Enlarge the resulting opening from above using the spreader until the door pops open

The inside door handle for the door lock release mechanism can be held open using a wooden wedge to facilitate opening.

• Open the door all the way
• Spread open and rip off the hinges using the spreader
Removing the vehicle doors • Mercedes-Benz passenger cars

- Cut the electrical lines
- Remove the door

Opening on the hinge side:

- Squeeze the front fender with the spreader to enlarge the door gap on the hinge side. Ensure that the spreader does not touch the suspension strut. This procedure cannot be used on fenders made of plastic.

Where plastic fenders are involved or where the accident has closed off access proceed as follows:

- Remove side window
- Insert spreader between door and upper door frame
- Expand spreader until a sufficient gap forms at the hinge side of the door
Removing the vehicle doors • Mercedes-Benz passenger cars

Opening on the hinge side:

The following procedure can also be used:

- Remove side window
- Apply spreader at an incline from above
- Squeeze door using spreader until a sufficient gap forms at the hinge side of the door

- Further enlarge the door gap at the height of the door lock using a spreader
- Spread open and rip off the hinges using the spreader
- Cut the electrical lines
- Remove the door

NOTE

The hinge pins are hardened. Hardened parts cannot be cut. There is a risk that the cutting blade on the hydraulic cutting gear may be damaged or destroyed.
Removing the vehicle doors • Maybach

Opening on the hinge side:

- Remove the side windows
- To create the required gap, squeeze/remove the fender with the spreader or
- create the required gap using a Halligan tool
- Spread open and rip off the hinges using the spreader. The hinges break at the pins.
- Cut the electrical lines
- Remove the door

Opening the front door

Opening the rear door
Removing the vehicle doors • Maybach

Opening the front doors at the lock side

• Remove side window
• Apply spreader vertically from above
• Squeeze door until a sufficient gap has formed at the hinge side

• Alternatively, insert spreader between door and upper door frame
• Expand spreader until a sufficient gap forms at the lock side of the door

• Press both tips of the spreader into the opening produced, in order to expand the opening in a number of small spreading operations. During this process slide the ends of the spreader toward the door lock, continuing until the door pops open.
• Spread open and rip off the hinges using the spreader
• Cut the electrical lines
• Remove the door
Opening the rear doors at the lock side

- Remove the side windows
- Insert spreader in window frame at an angle

NOTE
With any other procedure, only the aluminum door paneling is stripped off without a sufficiently large opening being created in the area of the door lock.

- Expand spreader until a sufficient gap has formed
- Press both tips of the spreader into the opening produced from above in order to expand the opening in a number of small spreading operations. During this process slide the ends of the spreader toward the door lock, continuing until the door pops open.
- Cut off the hinges using the rescue shears or spread them with the spreader until they break off
- Cut the electrical lines
- Remove the door

NOTE
The hinge pins are hardened. Hardened parts cannot be cut. There is a risk that the cutting blade on the hydraulic cutting gear may be damaged or destroyed.
Removing the vehicle doors • smart

smart fortwo (model 450, model 451) and smart roadster (model 452)

Opening on the lock side

- Secure vehicle and support on blocks
- The plastic door paneling can be removed to provide a better overview of the location of the hinges and door lock

- Use a crowbar to create a gap large enough to insert the rescue shears
- Insert the rescue shears and cut through the striker of the door lock

Striker after being cut off
smart fortwo (model 450, model 451) and smart roadster (model 452)

- Open the door all the way
- Insert spreader at upper hinge
- Spread open and rip off the hinge using the spreader

- Insert spreader at lower hinge
- Spread open and rip off the hinge using the spreader
- Cut the electrical lines
- Remove the door
Removing the vehicle doors • smart

smart fortwo (model 450, model 451) and smart roadster (model 452)

Because the hinges are made of forged steel, and thus extremely strong, the recommended procedure on the smart fortwo (model 450) is to open the door on the lock side, where the spreader can act against the more pliant aluminum of the door structure.

Should it be absolutely necessary to open the door on the hinge side, apply the spreader at the upper hinge, inserting it from above. Hold the spreader vertically and rip off the hinge.

Opening on the hinge side

On the new smart fortwo (model 451), the door structure is made of steel. In addition, high-strength sheet steel and steel profile is used for the diagonal strut and the strips for the side window channels. This makes opening at the hinge side easier on this vehicle.

- The plastic door paneling can be removed to provide a better overview of the location of the hinges and door lock
- Remove plastic fender
- Insert spreader at hinge

- Spread open and rip off the hinges using the spreader
- Cut the electrical lines
- Remove the door
smart forfour (model 454)

Opening on the hinge side

- Remove plastic door paneling
- Position the spreader between the hinge and the A-pillar or fender
- Spread the hinge until it breaks off

The following procedure can also be used:

- Remove plastic door paneling
- Cut through door frame (1) above hinges using the rescue shears (cut A)
- Cut through door frame (1) below hinges using the rescue shears (cut B)

- Cut through the window frame (2)
Removing the vehicle doors • smart

smart forfour (model 454)

- Cut through the crossmember (3) (cut C)

- Cut the electrical lines
- Insert the spreader from above and pull the door outwards

- Carefully cover sharp-edged parts using a set of protective covers
Removing the vehicle roof • Mercedes-Benz passenger cars

⚠️ WARNING

When vehicle parts are cut open or cut off, sharp edges are produced, which can cause injury to the casualties or to the rescue crew.

Cover the appropriate parts with protective covers or pillar protection.

⚠️ WARNING

The gas generators of windowbags are filled with compressed gas and they must not be cut. Suitable safety precautions for patients and the rescue team should be implemented, if required.

The bursting of a gas generator may lead to sharp-edge parts being ejected at high speeds. The loud noise may result in the victims experiencing a blast trauma.

Remove inner paneling of A, B and C-pillars using a suitable tool and check whether any gas generators are installed in the area of the planned cuts. Mark the position of the cuts on the outside of the vehicle.

The roof plays a major role in lending rigidity to the body. When cutting away the roof, it is absolutely essential to ensure that the vehicle is adequately and safely supported so as to prevent the body from collapsing and causing further injury to the occupants.

Furthermore, important fixed points on the bodywork, which may be necessary later in the rescue of the victims, could be destabilized or destroyed by cutting away the roof.

Removing the vehicle roof must therefore be considered a critically important event and should be planned with the emergency physician. If removing the roof is the only possible way of gaining access to the victim or of initiating other essential action, carefully consider whether partial removal of the roof might be sufficient.

Depending on the accident situation, the corresponding pillar can be folded forward or backwards after being cut.

Set of protective covers (example)
1. Pillar padding with Velcro fastener
2. Protective cover with round magnets
Partial removal of roof

- Saw out windshield at edges (see chapter: Removing the windows)
- **Remove inner paneling of A-pillar and check whether a gas generator has been installed in the A-pillar for the windowbag.** Mark cutting position on outside of vehicle
- Cut through the A-pillar as close to the bottom as possible but **do not cut the gas generator!**

- On the CL-Class (model 216) and the E-Class coupé (model 207), the A-pillars are reinforced by a high-strength steel tube. These internal reinforcement tubes can only but cut using high-powered rescue shears and they must be exposed first.
- It is easier to cut the A-pillar free in the area of the roof frame on this vehicle.

- On the S-Class (model 221) the cutting points are marked (> CUT <) in the windshield

Cutting marks on S-Class (model 221)
Partial removal of roof

- **Remove inner paneling of B-pillars** and determine location of seat belt height adjuster or any structural reinforcements present
- Check whether a gas generator for the windowbag is installed above the B-pillar in the roof frame. Mark cutting position on outside of vehicle
- Cut through B-pillar above the seat belt height adjuster

- On vehicles with a structurally reinforced B-pillar, e.g. E-Class (model 211); C-Class (model 204) and CLK-Class coupés (model 209), cut off the B-pillar by making a v-shaped cut through the roof at the sides but **do not cut the gas generator**!

- Saw open the rear window at the top between the C-pillars
- **Remove inner paneling of C-pillar and check whether a gas generator has been installed in the C-pillar for the windowbag.** Mark cutting position on outside of vehicle
- Make a v-shaped cut at the top of the C-pillar but **do not cut the gas generator**!
Partial removal of roof

- In the S-Class (model 221) and CL-Class (model 216), certain areas of the C-pillar are particularly well-suited for cutting through. Such areas are clearly designated with "CUT" marks in the rear window.

- Make a v-shaped relief cut at rear in center of roof.

- Fold the roof back towards the rear taking into account wind strength and direction and secure roof with fire brigade safety lines to prevent it from springing back.
Complete removal of the roof

- Remove inner paneling of A-pillar and check whether a gas generator has been installed in the A-pillar for the windowbag. Mark cutting position on outside of vehicle.
- Cut through the A-pillar as close to the bottom as possible but do not cut the gas generator!
- Leave the windshield (bonded) in its frame and saw open across its entire width at the height of the cuts in the A-pillars. The windshield can be removed together with the roof.

On the CL-Class (model 216) and the E-Class coupé (model 207), the A-pillars are reinforced by a high-strength steel tube. These internal reinforcement tubes can only but cut using high-powered rescue shears and they must be exposed first using the rescue shears.

Alternatively, it is easier to cut the A-pillar free in the area of the roof frame on this vehicle.
Removing the vehicle roof • Mercedes-Benz passenger cars

Complete removal of the roof

- In the S-Class (model 221), certain areas of the A-pillar are particularly well-suited to being cut through. Such areas are clearly designated with "CUT" marks in the windshield.

- Remove inner paneling of B-pillars and determine location of seat belt height adjuster or any structural reinforcements present.
- Check whether a gas generator for the windowbag is installed above the B-pillar in the roof frame. Mark cutting position on outside of vehicle.
- Cut through B-pillar above the seat belt height adjuster.
- On vehicles with a structurally reinforced B-pillar (e.g. E-Class, model 211 and CLK-Class coupés, model 209), cut off the B-pillar by making a v-shaped cut through the roof at the side but do not cut the gas generator!

- Saw out rear window at edges.
- Remove inner paneling of C-pillar and check whether a gas generator has been installed in the C-pillar for the windowbag. Mark cutting position on outside of vehicle.
- Cut through the C-pillar as close to the top as possible but do not cut the gas generator!
Complete removal of the roof

• In the S-Class (model 221) and CL-Class (model 216), certain areas of the C-pillar are particularly well-suited for cutting through. Such areas are clearly designated with "CUT" marks in the rear window

"CUT" marking on S-Class (model 221)

• Raise roof together with windshield and, depending on the accident situation, move away to front or rear

With regard to partial or complete removal of vehicle roof, all cutting edges on the A, B and C-pillars should be covered with protective covers or pillar protection
Removing the vehicle roof • Mercedes-Benz passenger cars

Rescuing occupants from a vehicle with a closed soft top, coupé roof or Vario roof

WARNING
Before and while opening the roof, always ensure that the victims' freedom of movement is not restricted and that nobody will be injured by the moving parts (roll bar, soft top, soft top compartment lid, soft top linkage).

NOTE
If the coupé roof (SL-Class, model 129) can no longer be removed it can then be cut as for a normal roof.
For vehicles with a glass roof version, proceed as for removal of the windshield (see chapter: Removing the windows).

Vario roof on SLK-Class (models 171 and 172) and SL-Class (model 230)

The SLK-Class and SL-Class are equipped with a Vario roof, which looks identical to a coupé roof, but which can be opened and closed electrohydraulically like a convertible soft top.
The control switch is located in the center console.
NOTE
The Vario roof is operated electrohydraulically and must be cut away as for a normal roof if the electrical system has failed or if the battery has been disconnected.

Panoramic Vario roof with MAGIC SKY CONTROL (model 172)

With the panoramic Vario roof with MAGIC SKY CONTROL the transparency of the roof can be changed.

The MAGIC SKY CONTROL control unit contains a DC/AC converter and operates in normal operating condition with a maximum output voltage (AC voltage) of $U = 140\;\text{V}$ at a maximum frequency of $f = 400\;\text{Hz}$.

The MAGIC SKY CONTROL roof is made of several layers. When an AC voltage is applied to a suspended particle device (SPD) layer, the transparency of the window changes from an opaque to a transparent state or from the transparent to the opaque state.

NOTE
The MAGIC SKY CONTROL panoramic Vario roof is operated electrohydraulically and must be cut away as for a normal roof if the electrical system has failed or if the battery has been disconnected.
Removing the vehicle roof • Mercedes-Benz passenger cars

G-Class convertible (model 463)

The convertible in the G-Class has two independent of each other locking hooks at the left and right on the windshield panel that have to be opened. The control switch for the electric power soft top is located in the center console.

Emergency opening:

To open in an emergency, fold the locking lever all the way down and push the soft top towards the rear by hand until mechanically locks up.

E-Class convertible (model 207)

On the convertible of the E-Class (model 207) the soft top is locked or unlocked electrically.

The control switch for the electric power soft top is located in the center console.
CLK-Class convertible (model 209)

On the convertible of the CLK-Class (model 209) the soft top is locked or unlocked electrically.

The control switch for the electric power soft top is located in the center console.

Soft top frame

The soft top frame is a combined steel/aluminum structure. The header bow and retaining bracket are made of die-cast aluminum. The corner bows and cross bows consist of extruded aluminum profiles. In combination with the steel struts these parts are given bending and profile strength.

The rear-wall window is made of single-pane safety glass (ESG) and bonded into a frame compound.
Removing the vehicle roof • Maybach

Notes on roof removal

It is difficult to completely remove the roof of the Maybach because of the tubular frame in the A-pillars and B-pillars.

The B-pillar with internal steel tube can be cut through in the upper area with the rescue shears after it is worked on for an extended period of time.

The reinforced A-pillar cannot be cut using standard rescue shears. The reinforcement tube can only be cut using a cutting disk or a dual direction rescue saw ("Twinsaw"). Ensure that sufficient distance to the gas generators is maintained during the cutting operations due to the heat produced.

WARNING

When *cutting open* or *cutting through* vehicle parts using a cutting disk or rescue saw, there is a risk of fire caused by the sparks generated.

Protect vehicle against fire; have fire extinguishing equipment ready.

Cover the occupants before commencing work, preferably with a transparent sheet.

Wear protective clothing and gloves and safety glasses.

Removing the roof of the Maybach 57

- Leave the windshield (bonded) in its frame and saw open across its entire width at the height of the cuts in the A-pillars. The windshield can be removed together with the roof (see chapter: Removing the windows).

- **Remove the A-pillar trim and check where the gas generators for the front windowbags are installed in the A-pillars.** Mark cutting position on outside of vehicle.

1 Right front windowbag gas generator
Removing the roof of the Maybach 57

- Expose the reinforcement tube using the tip of the rescue shears
- Cut through the reinforcement tube using an offset grinding machine or dual direction saw (Twinsaw) but do not cut the gas generator!

Cut through the B-pillar above the seat belt height adjuster using the rescue shears

Remove the C-pillar trim and check where the gas generators for the rear windowbags are installed in the C-pillars. Mark cutting position on outside of vehicle.
Removing the roof of the Maybach 57

- Saw open the rear window across its entire width at the level of the planned cuts through the C-pillars
- Cut through the C-pillar but **do not cut the gas generator**!

- Raise roof together with windshield and, depending on the accident situation, move away to front or rear.
Partial removal of the roof of the Maybach 62

Under certain circumstances, it may be sufficient to partially remove the roof to rescue the rear passengers in the Maybach 62. The rear part of the roof is then folded forwards.

- Cut through the roof frame and, if installed, the frame of the glass roof approx. 15 cm behind the B-pillar

- Saw open the glass roof between the cuts in the roof frame

- Remove the C-pillar trim and check where the gas generators for the rear windowbags are installed in the C-pillars. Mark cutting position on outside of vehicle
- Cut through the C-pillar but do not cut the gas generator!
Partial removal of the roof of the Maybach 62

- Saw open the rear window across its entire width at the level of the cuts through the C-pillars

- Fold roof forwards and secure against springing back using fire brigade safety lines
Removing the vehicle roof • Maybach

Large side opening

If it is not possible or advisable to partially or completely remove the roof due to the circumstances, it is possible to create a "large side opening" to allow the occupants to be rescued quickly.

This involves removing the entire side area consisting of front door, B-pillar and rear door.

Procedure

• Remove windows/make windows safe as required
• Open rear door at lock side
• Cut through B-pillar at top using rescue shears

• Cut through seat belt using belt knife
• Cut into B-pillar at bottom using rescue shears
• Position the spreader between the rear seat and B-pillar
Removing the vehicle roof • Maybach

Large side opening

• Use spreader to press B-pillar outwards and rip it off

• Spread open and rip off the hinges of the front door using the spreader
• Remove the entire side wall
smart fortwo coupé (model 450)
The smart fortwo coupé (model 450) has two roof variants:
- Plastic roof
- Glass roof made of single-pane safety glass (ESG)

The respective roof modules are bonded to the body structure. Regardless of the variant installed, we recommend cutting off the entire roof structure using the procedure described below.

- Cut through the A-pillars
- Saw open the windshield between the cuts in the A-pillars across its entire length.

smart fortwo coupé (model 451)
Two roof variants are available for model series 451:
- Full roof made of glass fiber reinforced polyurethane (PU)
- Panoramic sunroof made of polycarbonate (PC)

smart fortwo coupé (model 450)
- Cut through the B-pillars about 10 cm above the seat belt anchor point
Removing the vehicle roof • smart

smart fortwo coupé (model 450)

- Cut through the C-pillars below the gas-filled spring struts of the folding rear window.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the C-pillars are cut, the frameless single-pane safety glass rear window will probably break. Remove windows/make windows safe as required.</td>
</tr>
</tbody>
</table>

smart fortwo (model 451)

- Use a spring center punch to punch the tailgate made of single-pane safety glass in the area of the lock
- Press the tailgate outwards in the area of the lock and open
- Cut off the tailgate hinges using the rescue shears

- Remove rear plastic trim on B-pillar
- Make a v-shaped cut at the front and at the back of the B-pillar using the rescue shears
smart fortwo (model 451)

- Cut through the B-pillar between the v-shaped cuts using the rescue shears

smart fortwo (model 451)

- Lift the roof and carry it off to the rear, front or side depending on the situation

smart forfour (model 454)

Folding back the roof
- Cut through the A-pillars
- Saw open the windshield between the cuts in the A-pillars across its entire length
Removing the vehicle roof • smart

smart forfour (model 454)

- Cut through the B-pillars above (A) or below (B) the seat belt height adjuster

- Cut through the C-pillars as far as the roof frame

- Cut through the roof frame
smart forfour (model 454)

- Fold roof to rear and secure against springing back using fire brigade safety lines

Soft top on smart fortwo cabrio

The smart fortwo cabrio (model 450) is equipped with a folding top/rear soft top. It is locked and released automatically when the switch is pressed.

The control switch is located on the center console to the right of the gearshift lever.

The smart fortwo cabrio (model 451) is equipped with a Tritop textile soft top with a heated rear window made of single-pane safety glass (ESG). It is locked and released automatically when the switch is pressed.

The control switch is located on the center console in front of the gearshift lever.
Removing the vehicle roof • smart

Soft top on smart fortwo cabrio

When the folding top/rear soft top is open, the two side supports can be removed. The release levers for the side supports are located at the top of the B-pillars.

- Press the release button (1): The side supports lift up at the rear but remain secured in place
- Press the release button again
- Extract the side supports (2)

Convertible top on smart roadster

The smart roadster and roadster coupé are equipped with a soft top or a coupé roof as standard equipment.

Soft top:
The locking and release mechanisms for the soft top are attached to the windshield frame and are operated automatically when the switch is pressed.

The control switch is located in the center console in front of the gearshift lever.

The soft top can only be opened completely if the voltage supply is present and the ignition is switched on.

When the folding top is open, the two side supports can be removed.

- Press the integrated safety switch (1)
- Fold the release lever (2) down
- Remove the side support
Coupé roof on smart roadster coupé

The coupé roof installed on the smart roadster coupé consists of two roof panels with side supports, joined longitudinally at the center of the vehicle.

- Press the integrated safety switch (3)
- Fold the release lever (4) down
- Release side supports (see soft top)
- Pull the two side sections of the roof upward to remove
The following procedure can be used to push away the instrument panel:

- Carefully support and stabilize the vehicle
- Remove inner paneling of A-pillars
- Locate the position of any windowbag gas generators present and mark position of cut on outside of vehicle.
- Cut through the A-pillars above the instrument panel. The cut should be as high up as possible to ensure that sufficient stability is given for the use of the rescue ram.

Gas generators must not be cut!
Pushing away the instrument panel • Mercedes-Benz passenger cars

- Make a relief cut at the bottom of the A-pillar using the rescue shears
- Remove the perimeter door seal to allow use of the rescue ram

An additional relief cut can be made in the area of the fender
- Remove fender paneling
- Make relief cut

- Position the rescue ram between the A-pillar and the B-pillar To prevent the base of the ram from penetrating through the vehicle, ensure it is positioned on stable support points. The rocker panel attachments (1) available with the rescue ram are particularly well suited for stabilizing purposes.
- Extend the rescue ram as far as necessary
- To prevent vehicle parts from springing back, the rescue ram should be left under pressure until the casualty or casualties have been rescued from the vehicle.
If the B-pillar has been removed (e.g. to create a large side opening) or damaged and no longer provides a sufficient degree of stability for the rescue ram, then the rocker panel attachment (1) can be fastened in place using a spreader (2).

Disadvantage: This means that the spreader is tied up and is no longer available for any additional rescue measures!

Pressing the steering column away using a spreader

Alternatively, the steering column can be pressed upwards using a spreader

- Make a relief cut at the bottom of the A-pillar using the rescue shears
- Insert the spreader between steering column and rocker panel
- Press steering column upwards

or:

- Insert the spreader between center tunnel and steering column
- Press steering column upwards
Pushing away the instrument panel • Mercedes-Benz passenger cars

Pushing up the A-pillar with the spreader

In the newer model series (e.g. 204, 207, 212) there are limits to the extent that the instrument panel can be pushed out of the way with the rescue ram due to design modifications affecting construction and material quality in the areas of the A-pillars, the cockpit crossmember and the fenders.

Alternatively, the A-pillar can be pressed upwards using a spreader. The procedure is described below using the C-Class coupé of model series 204 as an example.

Upper A-pillar cut

- Cut the A-pillar above the lower longitudinal member using the rescue shears.

Lower A-pillar cut

- Cut the A-pillar below the lower longitudinal member using the rescue shears.
Pushing away the instrument panel • Mercedes-Benz passenger cars

Longitudinal member cut

- Make a relief cut in the lower longitudinal member using the rescue shears.

Bottom of A-pillar

- Between the two cuts, bend the A-pillar forwards using the spreader.

Pushing up the A-pillar

- Fit the spreader in the opening produced between the A-pillar and the rocker panel and press the A-pillar upwards.

Note

When pressing up the A-pillar with the spreader, make sure there is adequate support under the A-pillar.
Maybach 57 and Maybach 62

- Carefully support and stabilize the vehicle
- Remove inner paneling of A-pillars
- Locate the position of any windowbag gas generators present and mark the cutting positions on the outside of the vehicle
- Cut through the A-pillars above the instrument panel. The cut should be as high up as possible to ensure that sufficient stability is given for the use of the rescue ram.
 Gas generators must not be cut!

(see chapter "Removing the vehicle roof")

- Leave the windshield (bonded) in its frame and saw open across its entire width at the height of the cuts in the A-pillars
- Make a relief cut at the front at the bottom of the A-pillar

- Position the rescue ram between the A-pillar and the B-pillar. To prevent the base of the rescue ram from breaking through, make sure that the supporting point is a stable one. The rocker panel attachments (1) available with the rescue ram are particularly well suited for stabilizing purposes.
- Extend the rescue ram as far as necessary
- To prevent vehicle parts from springing back, the rescue ram should be left under pressure until the casualty or casualties have been rescued from the vehicle.
Maybach 57 and Maybach 62

If the B-pillar has been removed (e.g. to create a large side opening) or damaged and no longer provides a sufficient degree of stability for the rescue ram, then the rocker panel attachment (1) can be fastened in place using a spreader (2).

Disadvantage: This means that the spreader is tied up and is no longer available for any additional rescue measures!
smart fortwo coupé (model 450 and model 451)

- Carefully support and stabilize the vehicle
- Cut through the A-pillars on the smart fortwo coupé above the instrument panel

- Make a relief cut on the A-pillar below the lower door hinge using the rescue shears
- Make a relief cut on the A-pillar above the lower door hinge

- Remove plastic fender
- Make a relief cut on the longitudinal member
Pushing away the instrument panel • smart

smart fortwo coupé (model 450 and model 451)

- Fix the rocker panel attachment in place using the spreader

- Insert the rescue ram between the A-pillar and rocker panel attachment

 Ensure that it is positioned securely on the A-pillar!

- Extend the rescue ram as far as necessary
- To prevent vehicle parts from springing back, the rescue ram should be left under pressure until the casualty or casualties have been rescued from the vehicle.

Alternative procedures:

Variant 1:

- Bend the area of the A-pillar between the relief cuts outwards using the spreader
- Insert the spreader in the space created and press the instrument panel upwards
Pushing away the instrument panel • smart

smart fortwo coupé (model 450 and model 451)

Variant 2:
- Insert the spreader between the rocker panel and steering column and press the steering column upwards
- From the passenger side, insert the spreader between center tunnel and steering column and press the steering column upwards

smart forfour (model 454)

- Carefully support and stabilize the vehicle
- Cut through the A-pillar above the instrument panel
- Make a relief cut at the bottom of the A-pillar
Pushing away the instrument panel • smart

smart forfour (model 454)

• Position a rescue ram in the area of the joint (arrow) between the instrument panel crossmember and the A-pillar.

NOTE
Due to its construction, the A-pillar is not strong enough to allow the use of a rescue ram. The ram deforms the A-pillar and fender without pushing the instrument panel forward out of the way.

• Position the rescue ram on the B-pillar. To prevent the base of the ram from penetrating through the vehicle, ensure it is positioned on stable support points. The rocker panel attachments (1) available with the rescue ram are particularly well suited for stabilizing purposes.
• Extend the rescue ram as far as necessary
• To prevent vehicle parts from springing back, the rescue ram should be left under pressure until the casualty or casualties have been rescued from the vehicle.
Removing the gullwing doors

Because the doors of the car are designed as gullwing doors with their own particular opening geometry, the following procedures at variance with the standard process must be followed.

- Cut through the rear door pillar

- Cut through the front door pillar

NOTE

When the front and rear door pillars have been cut, the upper parts of the gullwing doors swing upwards due to the force of the pneumatic springs.
Special considerations for the SLS AMG (model 197)

Removing the gullwing doors

- Bend the gullwing door down
- Cut through the door lock
- Remove the door
- Press the pneumatic springs off the ball studs (arrows) at the bottom
- Cut through the hinges
- Cut the wiring harness
- Remove the upper part of the door

1 Pneumatic spring
Removing the gullwing doors from a vehicle lying on its roof

The SLS AMG is equipped with a safety system which uncouples the door hinges from the hinge arms when the vehicle comes to rest lying on its roof after an accident.

Each door hinge contains a pyrotechnical initiator which is triggered by the restraint systems control unit.

The pyrotechnical initiator opens the lock pawl via a pin. This releases the catch hook, which is turned away from the retaining bolt of the catch arm by spring force. The spring force pushes the door hinge off the hinge arm.

When the door lock is opened, the doors can be pulled off the hinge arms in the horizontal direction.
Special considerations for the SLS AMG (model 197)

Removing the gullwing doors from a vehicle lying on its roof

If the doors cannot be removed by the above method on a vehicle lying on its roof, the following procedure may alternatively be used:

- Open the door lock
- Force the door open and bend it downwards
- Cut through the front door pillar (arrow A) and rear door pillar (arrow B)
- Cut the wiring harness
- Remove the door

Pushing away the instrument panel

- Use the spreader to create a suitable surface for mounting the rocker panel attachment at the bottom of the B-pillar and on the rocker panel
- Position the rocker panel attachment

- Position the rescue ram. At the front, position the rescue ram at the upper or lower bolting point of the cockpit crossmember.
- Extend the rescue ram
Special considerations for the SLS AMG (model 197)

Removing the roof

- Cut through the front of the roof above the A-pillars
- Cut through the rear of the roof above the B-pillars
- Cut the wiring harness
- Remove the roof
If the battery has not yet been disconnected, then for vehicles with power seats the "seat adjustment" switch can be used to try and adjust the seats electrically. Due to deformation of the seat rails, seats with manual or electric seat adjustment can frequently no longer be moved forward or back after an accident. **Electric seat adjustment is – at the latest – no longer functional after disconnecting the battery.**

In these cases, the **instrument panel** can be pushed away from the victim using a hydraulic rescue ram. This is described in more detail in the chapter entitled "Pushing away the instrument panel".

WARNING

When vehicle parts are cut open or cut off, sharp edges are produced, which can cause injury to the casualties or to the rescue crew. Cover the appropriate parts with protective covers or pillar protection.
Seat adjustment • Mercedes-Benz passenger cars

Partially electric seat adjustment

The seat elements depicted by the differently shaped segments of the switch can be moved in the desired direction by pressing the appropriate switch (cf. illustration).

The switch group is located on the bottom of the seat on the door side.

⚠️ WARNING
When operating the partially electric seat adjustment, make sure that nobody can become trapped by the moving parts.

Fully electric seat adjustment

The seat elements depicted by the differently shaped segments of the switch can be moved in the desired direction by pressing the appropriate switch (cf. illustration).

The switch group is located at the top on the relevant door.

⚠️ WARNING
When operating the fully electric seat adjustment, make sure that nobody can become trapped by the moving parts.
Seat adjustment • Maybach

Fully electric seat adjustment

The Maybach is equipped with fully electric seat adjustment on all seats as standard.

The seat elements depicted by the differently shaped segments of the switch can be moved in the desired direction by pressing the appropriate switch (cf. illustration).

The switch group is located at the top on the relevant door.

NOTE

The seats can be adjusted with the ignition key removed and the door open.

Adjusting the rear seats (Maybach 62)

The reclining seats at the rear of the Maybach 62 are equipped with additional functions and adjustment options:

• Upright position or reclined position adjustment
• Seat cushion fore/aft adjustment
• Lower leg rests which can be swiveled and adjusted in length
• Folding and adjustable padded footrest

WARNING

When operating the fully electric seat adjustment, make sure that nobody can become trapped by the moving parts.
smart fortwo (model 450), smart roadster (model 452) and smart forfour (model 454)

Vehicles in the smart model series feature manual seat adjustment as standard. The release levers for fore/aft adjustment (1) are located at the fronts of the seats, with backrest adjustment (2) – for the driver seat only – on the outside of the seat.

Deformation of the seat rails often means that the seats can no longer be pushed back after an accident. In these cases, the instrument panel can be pushed away from the victim using a hydraulic rescue ram. This is described in more detail in the chapter entitled "Pushing away the instrument panel" (p. 70 ff.).

smart fortwo (model 451)
Following an accident it is occasionally useful to remove the head restraints after consultation with the emergency physician:

- to provide access to the rear passengers in two-door vehicles
- to provide the rescue personnel with more space to fit the cervical collar ("stiff neck") to the victim

WARNING

Since the casualty is exposed to additional risk of injury when the head restraints are removed because the head restraint is no longer able to provide support, head restraints should only be removed in exceptional cases and in consultation with the emergency physician.

As a rule you should first try to move the backrest as far back as possible to create the required space for the casualty (see chapter: "Seat adjustment").

The head restraint may be useful for stabilizing the victim.
Manual head restraint adjustment

In most mechanical head restraint systems, the head restraint is moved to the top position simply by pulling on it. Pressing the release button (1) and simultaneously pulling upwards allows the head restraint to be removed from its guides. The release button is usually located on the receptacle for the head restraint bracket.

NECK-PRO head restraints

On NECK-PRO head restraints, the electrical line for the triggering mechanism is located in the right-hand guide tube.

Electric head restraint adjustment

The switch for electric head restraint adjustment is integrated into the switch group for fully electric seat adjustment.

The head restraint is moved to the top position by pressing the switch. Electric head restraints in MB vehicles cannot be pulled out until a removal safeguard is removed from the back of the backrest after detaching the seat-back lining.

NECK-PRO head restraints

On NECK-PRO head restraints, the electrical line for the triggering mechanism is located in the right-hand guide tube.
Electric head restraint adjustment

Maybach vehicles are equipped with electric head restraint adjustment.

The switch for electric head restraint adjustment is integrated into the switch group for fully electric seat adjustment.

The head restraint can be pulled out of its guide in any position by pushing it beyond the resistance of the end locking device.

1 Head restraint switch
smart fortwo (model 450 and 451) and smart roadster (model 452)

On the following model series, the head restraints are integrated in the backrests:

- smart fortwo coupé and cabrio (model 450)
- smart fortwo coupé and cabrio (model 451)
- smart roadster and roadster coupé (model 452)

On the smart forfour (model 454), all seats feature manually adjustable head restraints.

To remove the head restraint, just pull it upwards.
For Mercedes-Benz vehicles an electronic easy entry/exit is available as special equipment. When the driver door is opened (ignition off) or when the electronic key is removed, the steering column is moved all the way up. The driver seat may be moved to the rear at the same time. When closing the driver door, the steering column and driver seat are automatically reset to the last adopted position.

The rotary switch (1) for the easy entry/exit is located on the adjuster lever for the electronic steering column adjustment below the combination switch (lights and windshield wipers) on the steering wheel.

On the latest-generation Mercedes-Benz vehicles the easy entry/exit feature can be switched on or off in the "COMFORT" sub-menu of the control system using the buttons on the multifunction steering wheel (2).
Deactivation of easy entry/exit

Care must be taken to ensure that nobody gets caught in moving parts when the easy entry/exit feature is operated.

The procedure must be stopped immediately if there is any risk of someone being caught in between moving parts.

This can be done either:

• By actuating the steering column adjustment switch (1) on the steering wheel

The seat and steering column immediately stop.

or

• By pressing the steering column adjustment switch (2) on the control panel on the driver door

The seat and steering column immediately stop.

or

• By actuating the switch for seat adjustment (3) on the control panel on the driver door
• By pressing the position key of the memory function (4)

The seat and steering column immediately stop.
Deactivation of easy entry/exit

The electronic easy entry/exit feature is installed in the Maybach as standard.

When the driver's door is opened (ignition off) or when the electronic key is removed, the steering column is moved in the direction of the instrument panel and raised. At the same time, if preset, the driver seat is moved to the rear. When closing the driver door, the steering column and driver seat are automatically reset to the last adopted position.

The easy entry/exit feature is switched on and off in the "COMFORT" sub-menu of the control system using the buttons on the multifunction steering wheel (1).

Aborting the adjustment procedure

Care must be taken to ensure that nobody gets caught in moving parts when the easy entry/exit feature is operated.

The procedure must be stopped immediately if there is any risk of someone being caught in between moving parts.

This can be done either:

- By actuating the steering column adjustment switch (2) on the steering wheel
- By actuating the switch for seat adjustment (3) on the control panel on one of the doors
- By pressing the memory button (4) on the control panel of one of the doors

The seat and steering column immediately stop.

or

- By actuating the switch for seat adjustment (3) on the control panel on one of the doors
- By pressing the memory button (4) on the control panel of one of the doors

The seat and steering column immediately stop.
WARNING

When the electric steering column adjustment switch is pressed, make sure that nobody is trapped by the moving parts.

Stop the adjustment immediately if there is a danger of anybody being trapped.

Depending on the equipment specification, Mercedes-Benz vehicles feature either manual or electric steering column adjustment.

The lever for manual steering column adjustment is located underneath the steering column.

The switch for the electric steering column adjustment is located underneath the combination switch (lights and windshield wiper) on the steering wheel or on the control panel on the driver door.
Maybach 57 and Maybach 62

The switch for the electric steering column adjustment is located below the combination switch (lights and windshield wipers) on the steering wheel.

2 Steering column adjustment switch
smart forfour (model 454)

The height of the steering wheel can be adjusted according to requirements.

- Press the lock (1) downwards
- Adjust the steering wheel
- Press the lock (1) upwards

1 Locking mechanism
Roll bar • Mercedes-Benz passenger cars

⚠️ WARNING

When disconnecting the batteries or when cutting electrical lines, the ground lines must always be disconnected or cut through first, as otherwise there is a risk of short-circuiting.

If this is not possible, insulated tools must be used to disconnect or cut the cables.

⚠️ WARNING

There is a risk of injury through an untriggered roll bar in its deployment area.

If, in the course of rescue work, where the battery has not been disconnected, parts of the vehicle undergo significant movement or electrical lines are cut, a deployment of the roll bar cannot be ruled out. This can cause injury if there is anyone within the deployment area of the roll bar.

Disconnect all batteries. If this is not possible, the occupants must be protected before raising the roll bar.

Assistants should not be located in the deployment area, if the roll bar has not been deployed, unless it is absolutely necessary.

Do not place any objects in the area of a roll bar that has not been deployed.
Observe roll bar

In cases where the rescue or treatment of victims has to be carried out within the movement radius of an untriggered roll bar (e.g. where persons are trapped), the following points must be observed before commencing rescue operations:

- Switch off the ignition
- Disconnect or cut both battery lines (positive and negative cables) (for vehicles with two batteries at both batteries)
- Do not place tools, rescue equipment or other objects on the roll bar when it has not been extended
Roll bar of smart fortwo cabrio and smart roadster

On the smart fortwo cabrio (model 450 and 451), smart roadster and roadster coupé (model 452), the roll bar is integrated in the body structure.
WARNING

When disconnecting the batteries or when cutting electrical lines, the ground lines must always be disconnected or cut through first, as otherwise there is a risk of short-circuiting.

If this is not possible, insulated tools must be used to disconnect or cut the cables.

WARNING

There is a risk of injury within the deployment range of airbags that have not been triggered or have only been partially triggered.

If, during rescue work, where the battery has not been disconnected, parts of the vehicle undergo significant movement or electrical lines are cut, then an airbag (front airbag, sidebag or windowbag) may be deployed. In this case, both the airbag and any loose objects or glass splinters, which could be projected towards the accident victims or assistants, may cause injuries.

Cover occupants before commencing any work, preferably with a transparent sheet. Wear protective clothing/safety glasses.

Disconnect all batteries. If this is not possible, or only partially possible, keep away from airbags that have not been triggered or have only been partially triggered.

Do not perform any cutting operations in the vicinity of airbags that have not been triggered or have only been partially triggered.

Keep heat away from airbags that have not been triggered or have only been partially triggered.

Do not place any objects in the vicinity of airbags that have not been triggered or have only been partially triggered.

NOTE

In the following vehicles both batteries must be disconnected:

- E-Class (model 211) up to 31.05.06
- CL-Class (model 216)
- CLS-Class (model 219) up to 31.05.06
- S-Class (model 221)
- SL-Class (model 230)
- SLR McLaren (model 199)
- M-Class (model 164)
- GL-Class (model 164)
- R-Class (model 251)

If only one battery is disconnected, the other battery supplies the airbag system so that it remains active!

NOTE

The triggering strategies for the supplemental restraint systems are subject to modification if necessary, e.g. due to new findings in accident research.
Occupant restraint systems

All Mercedes-Benz vehicles are equipped with occupant restraint systems. The most important restraint systems are:

- Seat belts
- Restraint systems for children

Additional protection is provided by the SRS (SRS = Supplemental Restraint System), consisting of:

- Airbags
- Warning lamp \textit{SRS} in instrument cluster
- Emergency tensioning retractor
- Belt force limiter
- Roll bar (convertible)

The approximate position of an airbag in the vehicle can be ascertained from the "SRS AIRBAG" or "AIRBAG" badge at the installation location or in its immediate vicinity, depending on the model series.

The following airbags may be available in the vehicle, depending on the model and the equipment installed:

- Driver airbag in steering wheel housing
- Front passenger airbag above or in place of glove box
- Sidebags at front in doors or in outer sides of front seat backrests
- Rear sidebags in doors, side trim or wheel wells
- Head/thorax sidebags in doors or in outer sides of front seat backrests
- Windowbags in roof frame between A, C and/or D-pillars
- Knee airbag in instrument panel positioned level with the knees of driver and front passenger
- Front pelvisbags in the side panels of the seat cushion
WARNING

If using safety devices intended to protect against airbag deployments after an accident, there is a danger that these devices may be catapulted by the deploying airbag, presenting an additional injury hazard for the victim and the rescuers. We advise against the use of "protective devices" that are intended to prevent a pressure buildup by piercing holes in the airbag fabric because, if the airbag is triggered, the hot ignition gases can escape unhindered and cause burns.

Cover occupants before commencing any work, preferably with a transparent sheet. Wear protective clothing/safety glasses.

Disconnect all batteries. If this is not possible keep away from airbags that have not been triggered or have only been partially triggered.

Do not perform any cutting operations in the vicinity of airbags that have not been triggered or have only been partially triggered.

Keep heat away from airbags that have not been triggered or have only been partially triggered.

Do not place any objects in the vicinity of airbags that have not been triggered or have only been partially triggered.

Note

Various safety devices are available on the market which are intended to protect the victims and the rescue teams from airbag deployments. The Mercedes-Benz vehicle airbag systems, however, are designed so that they can no longer be triggered by the airbag sensor systems after the battery has been disconnected. Such safety devices are therefore unnecessary.

1 Sidebag or head/thorax sidebag
2 Pelvisbag
Sidebags and windowbags

Windowbags (3) and sidebags (5) or head/thorax sidebags are triggered:

- Whenever a high vehicle deceleration or acceleration acts in the transverse direction in the early stages of a collision
- Whenever additional protection can possibly be provided
- Always on the side of the collision
- Independently of the front airbags
- Irrespective of any activation of the emergency tensioning retractors
- Sidebags and head/thorax sidebags are triggered when the vehicle over-turns, only if a high vehicle deceleration in the transverse direction is detected and additional protection can be provided as a precaution.

Neither the front airbags nor the sidebags usually deploy in the case of rear-end collisions or rollovers without a high vehicle deceleration acting in the longitudinal or transverse direction.

On vehicles in the following model series both windowbags may be triggered following certain roll-overs around the vehicle’s longitudinal axis:

- E-Class (model 211)
- E-Class (model 212)
- CLS-Class (model 219)
- S-Class (model 220, as of facelift 10/2002)
- S-Class (model 221)
- S-Class coupé (model 215, as of facelift 10/2002)

The head/thorax sidebags could be triggered on the passenger side and, depending on the seat occupation, on the following model series:

- SLK-Class (model 171)
- SL-Class (model 230)
- CLK-Class convertible (model 209)

On vehicles in the other model series, windowbags are generally not triggered in the event of a rollover.

Note

By contrast to other airbag units the gas generators in the windowbags do not contain any solid fuel, but rather they are filled with highly-compressed gas and must not be cut!

Depending on the vehicle model the gas generators for windowbags are located in the A or C-pillars or in the side of the roof frame. For technical reasons the installation locations deviate somewhat in the various model series.

For this reason, we urgently recommend that before commencing any cutting operations on A or C-pillars or on the side of the roof frame, the corresponding inner paneling should be removed and the installation positions of the gas generators for windowbags should be ascertained.
Two-stage front airbag units

WARNING

If on two-stage front airbag units, **only the first ignition stage** has been activated, then this **cannot be seen from the outside**! Despite a **triggered airbag** the same **safety precautions** must be met as for an airbag that has not yet triggered. A **triggering of the second ignition stage** during rescue work cannot always be ruled out.

Cover occupants before commencing any work, preferably with a transparent sheet.

Wear protective clothing/safety glasses.

Disconnect all batteries. If this is not possible keep away from airbags that have not been triggered or have only been partially triggered.

Do not perform any cutting operations in the vicinity of airbags that have not been triggered or have only been partially triggered.

Keep heat away from airbags that have not been triggered or have only been partially triggered.

Do not place any objects in the vicinity of airbags that have not been triggered or have only been partially triggered.

Two-stage front airbag units are equipped with two ignition stages which are triggered independently depending on the deceleration values in the longitudinal direction.

The following vehicles are fitted with two-stage front passenger airbags as standard:

- S-Class (model 220)
- S-Class coupé (model 215)

Two-stage driver and front passenger airbags are included in standard equipment for the following vehicles:

- A-Class (model 169)
- B-Class (model 245)
- B-Class (model 246)
- C-Class (model 203 and 204)
- CLC-Class (model 203)
- E-Class (model 211)
- E-Class (model 212)
- E-Class coupé (model 207)
- E-Class convertible (model 207)
- CLK-Class (model 209)
- CLS-Class (model 219)
- SLK-Class (model 171)
- SLK-Class (model 172)
- SL-Class (model 230)
- S-Class (model 221)
- CL-Class (model 216)
- SLR McLaren (model 199)
- M-Class (model 163 as of 09/2000 and 164)
- M-Class (model 166)
- GL-Class (model 164)
- R-Class (model 251)
- SLS AMG (model 197)
On vehicles with two-stage front airbag units, only one ignition stage may be activated, depending on the severity of the accident.

It is not **externally apparent**, whether only **one** or **both ignition stages** have been activated. For this reason, the safety precautions for vehicles with two-stage front airbag units are to be observed (just like for airbags that have not been deployed) despite a triggered front airbag.

NOTE

The white, powdery residues left inside the vehicle after deployment of an airbag are nontoxic. They consist for the most part of talcum, which acts as a lubricant for the airbag fabric!
The airbag's air sack inflates within a few milliseconds during the collision. A front airbag reaches its full volume within approximately 45 ms. Immediately after maximum volume is reached, the airbag starts to deflate. The gas escapes through an air hole or through the fabric and the airbag collapses (exception: windowbags).

Fully triggered airbags that are hanging down can be pushed upwards or to the side so as to create the necessary space for the rescue action. Airbags do not need to be cut out or covered. A fully triggered airbag represents no medical risk for the occupants or the rescue crew.

In cases in which the rescue or care is to be performed in the area of airbags that have not been triggered, the following must be observed:

- Switch off the ignition
- Disconnect or cut the electrical lines on the battery (on both batteries in vehicles with two batteries)
- Do not perform cutting work in the immediate vicinity of the airbag units concerned
- If there are no occupants on the rear seats, move the front seats as far to the rear as possible

Avoid overheating the area around the airbag unit, such as the steering wheel impact plate, the instrument panel on the passenger side and the door linings. If an airbag unit is heated to over 160 °C, it is likely to be triggered.
Seat belts

The seat belt buckles can usually be opened normally after a crash. However, it is often easier to cut the belts at an easily accessible point. In this way the rescue crew do not need to lean over the victim, which might cause further discomfort or injury. Furthermore, leaving the belt buckle fastened provides the police with evidence that the belt was being worn.

Emergency tensioning retractor

Seat belt retractors, sometimes with reel tensioners, are installed as a unit lower down on the B and C-pillars, the buckle emergency tensioning retractors are located at the seat belt buckles. The seat belt emergency tensioning retractors are activated in frontal or rear-end collisions with a sufficiently high deceleration or acceleration acting in the longitudinal direction. Additionally, the emergency tensioning retractors are activated at specific rollovers around the vehicle's longitudinal axis, if the vehicle is equipped with a rollover sensor, and in the event of a side collision on the side away from the impact. Reel tensioners and buckle emergency tensioning retractors are only activated if the seat belt buckles are inserted.

Emergency tensioning retractors normally need no special consideration during a rescue.

Mercedes-Benz vehicles (depending on the vehicle model and equipment) are equipped with emergency tensioning retractors on both the driver and front passenger seats as well as the outer rear seats.

NOTE

The pyrotechnical tensioning devices on vehicles equipped with PRE-SAFE may consist of buckle emergency tensioning retractors (model 164, 211, 221, 251...) or reel tensioners (model 204).

NOTE

When the seat belt emergency tensioning retractor is activated, the belt is retracted by max. 150 mm. The retractors cannot be triggered after the battery has been disconnected!
Reversible emergency tensioning retractors with PRE-SAFE

The preventive passive occupant protection system PRE-SAFE can recognize critical driving situations that present an increased accident hazard, and prepare the vehicle and occupants preventively for a possible collision:

- The driver and front passenger seat belts are reversibly tensioned by means of an electric motor
- Depending on the vehicle equipment, the front passenger seat can be moved to a better longitudinal position and the cushion and backrest angles can be adjusted to a more favorable position.
- In vehicles with electrically adjustable individual rear seats, the inclination angle of the seat cushion can be optimized

The aim of this system is to move the occupants into the best possible position before any collision so that the seat belts and airbags can provide optimum protection in the crash.

When skidding outside the ESP controlled range, which could ultimately cause the vehicle to rollover, the sliding roof (when open) is closed.

Reversible emergency tensioning retractors

The seat belt emergency tensioning retractors in the inertia reels are electrically operated and reversible. If an accident is prevented, the preventive emergency tensioning retraction loosen the seat belts again.
All Maybach models are equipped with occupant restraint systems. The most important restraint systems are:

- Seat belts
- Restraint systems for children

Additional protection is provided by the SRS (SRS = Supplemental Restraint System), consisting of:

- Airbags
- Warning lamp SRS in instrument cluster
- Emergency tensioning retractor
- Belt force limiter

The approximate position of an airbag in the vehicle can be ascertained from the "SRS AIRBAG" or "AIRBAG" badge at the installation location or in its immediate vicinity.

The following airbags are present in the vehicle:

- Driver airbag (two-stage) in the steering wheel housing
- Front passenger airbag (two-stage) above the glove compartment
- Front sidebags (side airbags) in the outsides of the backrests
- Rear sidebags (side airbags) in the outsides of the backrests
- Front windowbags in the roof frame between A and B-pillars
- Rear windowbags in the roof frame between B and C-pillars
Sidebags and windowbags

Windowbags (3, 4) and sidebags (1, 2) are triggered:
- Whenever a high vehicle deceleration or acceleration acts in the transverse direction in the early stages of a collision
- Whenever additional protection can possibly be provided
- Always on the side of the collision
- Independently of the front airbags

- Irrespective of any activation of the emergency tensioning retractors
- Sidebags and head/thorax sidebags are triggered when the vehicle overturns, only if a high vehicle deceleration in the transverse direction is detected and additional protection can be provided as a precaution.
All smart vehicles are equipped with occupant restraint systems. The most important restraint systems are:

- Seat belts
- Restraint systems for children

Additional protection is provided by the SRS (SRS = Supplemental Restraint System), consisting of:

- Airbags
- Warning lamp in instrument cluster
- Emergency tensioning retractor
- Belt force limiter

The driver airbag is located in the steering wheel housing on all model series.

The front passenger airbag in the smart fortwo (model 450) is located below the instrument panel.

The front passenger airbag on the smart fortwo (model 451) is located in the instrument panel above the glove compartment.
The front passenger airbag on the smart roadster, smart roadster coupé and smart forfour is located in the instrument panel above the glove compartment.

The head/thorax bags are located in the outsides of the backrests on all model series (only as sidebags in the front seats on the smart forfour).

Only smart forfour (model 454)

The windowbags in the smart forfour (model 454) are located on the upper sides of the roof frame.

The gas generators are located in the area of the rear door behind the B-pillars.
Emergency tensioning retractor

All smart model series are equipped with three-point seat belts with belt force limitation.

The automatic belt retractors with integrated emergency tensioning retractors are located inside the bottom of the B-pillars.
E-Class (model 211 and model 212)

In the sedan of the E-Class (model 211 and model 212) an engine is used for the first time with a gasoline and natural gas drive. The engine can be operated with either natural gas or gasoline. The changeover of modes is done manually using the buttons on the multifunction steering wheel or automatically, if one of the two fuel modes has been used up.

In addition to the conventional fuel tank, the vehicle is fitted with stainless steel gas cylinders which are located in the spare wheel well and behind the rear seats in the trunk. The natural gas is stored in these pressure tanks under a normal pressure of up to 200 bar at a gas temperature of 15 °C.

Filling of the gas cylinders is done by way of a filling connection, which is located next to the gasoline filler neck behind the extended fuel filler flap at the right rear in the direction of travel.

The most suitable form of natural gas for operating a vehicle is compressed natural gas (CNG). CNG is naturally occurring gas in compressed form.

E-Class sedan (model 211) E 200 NGT (Natural Gas Technology)

1. Gasoline fuel tank
2. Gas cylinder
3. Gasoline fuel line
4. Natural gas fuel line
5. Gas pressure regulator
6. ME-SFI control unit
7. CNG control unit

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
Bivalent engine operation

E-Class sedan (model 212) E 200 NGT

1 Gasoline fuel tank
2 Gas cylinder
3 Gasoline fuel line
4 Natural gas fuel line

B18/1 Gas high-pressure sensor
N3/10 ME-SFI control unit
N50 CNG electronic pressure regulator
N118/2 CNG control unit
S189 Pressure switch
Y107/2 Gas safety shutoff valve
Safety

- Natural gas is lighter than air. Thus there are no restrictions on driving natural gas vehicles in multilevel car parks and tunnels.
- Extensive series of tests (drop tests, fire tests, crash tests) have demonstrated that the high-strength gas cylinders, lines, threaded connections and other fittings guarantee the highest possible safety levels even in the event of accidents. Thus, natural gas vehicles have no disadvantages in terms of crash behavior compared to conventionally powered vehicles.
- The installation of components necessary for natural gas operation in the vehicle are vital in helping to prevent gas from entering the vehicle’s interior.
- The risk of fire is no greater in natural gas vehicles than in gasoline or diesel-powered vehicles.

Gas pressure regulator

The task of the gas pressure regulator (in the engine compartment) is to reduce the high-pressure prevalent in the gas cylinders to the pressure required for the engine induction side.

The gas safety shutoff valve (1) in the pressure regulator is shutoff, if a system error is detected by the CNG control unit or, in the event of an accident, a corresponding crash signal is processed.

In the event of a malfunction in the pressure regulator, an overflow restrictor (2) reduces impermissibly high pressure by releasing it into the atmosphere via the vehicle floor.

Gas pressure regulator
1. Gas safety shutoff valve
2. Overflow restrictor
3. Line connection to engine
4. Line connection from gas cylinders
Bivalent engine operation

⚠️ DANGER

There is a risk of fire or explosion due to escaping gas!

Natural gas is usually colorless and odorless. To allow enable natural gas to be detected, an odorant is added which is responsible for the classic gas odor.

- Avoid ignition sources
- Switch off the engine
- Measure the gas concentration
- Let the gas escape and ensure adequate ventilation (blow the gas away) or
- Close the shutoff device(s) on the gas cylinders, if it is safe to do so

Follow the courses of action according to the guidelines of the professional fire services!

Gas cylinder and armature with safety features:

- **Gas safety shutoff valve (1)**
 The safety shutoff valve is opened with ignition "ON" and in gas operation mode. When the engine is off or in gasoline mode or in an emergency situation (crash signal from ME-SFI control unit), the solenoid valve circuit is interrupted, and the valve closes automatically.

- **Mechanical shutoff valve (2)**
 During service work, or if the natural gas tank system leaks, the gas cylinders can be sealed using a suitable tool with the mechanical shutoff valve. It is closed by turning in the clockwise direction.

- **Fuse (3)**
 The fuse reacts at temperatures above 110 °C and opens the relevant gas cylinder. The content of the gas cylinder can then escape into the atmosphere in a controlled manner via the flow limiter (5).

- **Flow limiter (5)**
 If there is a significant pressure drop in the system, e.g. in a crash involving separation of the entire connection fitting or a broken line in the system between the gas cylinders and the gas pressure regulator, the flow limiter screwed into the neck of the gas cylinder reduces the quantity of escaping gas by means of a very small shutter.

- **Rubber caps (7)**
 The safety fittings are fitted with gas-tight rubber caps. If the fuse (3) blows or gas escapes at the shutoff valves (1, 2), it is collected in the rubber caps and directed into the atmosphere via the connected corrugated tube on the vehicle floor.
Gas cylinder and armature with safety features:

1. Safety shutoff valve
2. Manual shutoff valve
3. Fuse
4. Threaded connection
5. Flow limiter
6. Gas cylinder made of stainless steel
7. Rubber caps
Bivalent engine operation

B-Class (model 245)

The B170 NGT BlueEFFICIENCY is the first vehicle in the Mercedes-Benz range of compact models to be equipped with bivalent engine operation. The 4-cylinder engine can be operated with either natural gas CNG (Compressed Natural Gas) or premium-grade gasoline.

The driver can set the required operating mode using the multifunction steering wheel in the multifunction display in the instrument cluster.

The engine 266.960 and the fuel system have had the following components added to them:

- CNG control unit
- Filler connection for natural gas behind the fuel filler flap
- 5 gas cylinders with shutoff valve
- Pressure regulating unit with safety shutoff valve and high-pressure sensor
- Low pressure gas shutoff valve in the gas pipe to the gas distribution rail
- Gas distribution rail with injection valves
- Gas low-pressure sensor
- Gas temperature sensor

B-Class (model 245) B 170 NGT BlueEFFICIENCY

1 Gasoline fuel tank
2 Gas cylinder
3 Gasoline fuel line
4 Natural gas fuel line
5 Pressure regulating unit
6 Motor electronics (ME-SFI) control unit
7 CNG control unit
In addition to the conventional fuel tank, five gas cylinders made of plastic composite material have also been installed. Two of them are located in the floor of the vehicle under the front passenger seat and the other three are arranged under the floor at the vehicle rear.

The nominal pressure for the gas cylinders is 200 bar. Each individual gas cylinder is checked at a test pressure of 300 bar, and each one has a burst pressure rating of more than 600 bar.

The gas cylinders are mounted in stable fixtures. Thermally activated safety valves equipped with a fuse, rupture disks and flow rate limiters help prevent gas cylinders from bursting. Each gas cylinder can also be mechanically locked using a manual shutoff valve.

Each of the five gas cylinders is equipped with a safety armature. In a parked vehicle that runs on gasoline, and depending on the predefined forces that act on a vehicle in the event of an accident, the cylinders are automatically locked by an electromagnetic shutoff valve.

Safety shutoff

A safety shutoff can be activated by a system error or a crash signal.

For safety reasons, a fault in the natural gas system can result in the system being shutoff. Reactivation is only possible if the fault is erased using DAS.

A crash signal shuts off the natural gas or gasoline injection system. The gasoline injection system is available again, the next time the engine is started, when the necessary function requirements are complied with. Reactivation of the natural gas system following a crash signal is only possible if the fault is erased using DAS.

Gas cylinder with safety armature

1. Gas cylinder safety armature
2. Electromagnetic shutoff valve
3. Thermally activate safety valve
4. Manual shutoff valve
5. Flow limiter
6. Rupture disk
7. Gas cylinder
High-voltage systems

⚠️ DANGER

New drive technologies (hybrid drive, fuel cell drive, electric drive) mean that lines carrying voltages of up to 500 V are used in some vehicles. For this reason, any work on the vehicle may only be carried out by specially trained technicians.

Particular caution is required at those locations in the vehicle which are associated with voltages up to 500 V, e.g. parts in the engine compartment. Orange lines and their connectors carry voltages of up to 500 V and must not be damaged.

You may be seriously or fatally injured if you
- remove covers from components marked with warning labels
- tamper with components of the drive system
- open housings
- separate connectors
- touch components or orange lines of the drive system in accident vehicles
- touch damaged orange lines or their damaged connectors
- touch damaged components of the drive system

⚠️ DANGER

Risk of injury from cables and components carrying high voltage.

Danger of electric shock

All components of the high-voltage system are marked with yellow warning labels alerting you to the high voltage.

The high-voltage cables are orange.

To avoid injury from electric shock, observe the following instructions:

- Deactivate the high-voltage circuit:
 - Ignition off and remove ignition key
 - Disconnect 12 V battery
 - Unplug LV connector from HV battery
- Do not cut any high-voltage lines!
- Avoid cutting or deforming the bodywork with rescue equipment in the vicinity of lines and components carrying high voltage!
- Avoid touching damaged orange lines and their damaged connectors!
- Avoid touching damaged components of the drive system!
Protection against the hazards of electrical current:

- All components that operate with high voltage have a contact protection feature, which guarantees effective protection against the hazards of the electrical current.
- All components that operate with high voltage are marked with warning labels (see picture). Cables supplying the components are colored orange for identification.
- Shutdown of the high-voltage on-board electrical system in an accident by triggering of the pyrotechnical isolation element actuated by the restraint systems control unit (crash detection):
 - All-pole separation of the energy sources and storage units.
 - Deactivation of the generator function of the electrical powerplant and disabling of the DC/DC converter boost function.
 - Active discharging of the intermediate circuit capacitors to below a critical value.
 - Automatic shutdown in the event of short circuit (software and fuse) to avoid cable overloads.

General precautions

- Do not touch any open high-voltage lines (orange cables) at the damaged point
- Do not cut any high-voltage lines (orange cables)
- Do not touch any high-voltage components with damaged or broken housings
High-voltage systems

Procedure for rescue services

- Ignition key to OFF position, deposit ignition key and KEYLESS-GO systems at least 5 m away from the vehicle
- Do not operate remote control of locking system

Alternatively, if inaccessible:

- Unplug LV connector from HV battery
- Disconnect 12 V battery/batteries

If HV battery is deformed:

- Unplug HV connector from HV battery
- Do not touch HV battery

NOTE
After disconnection of the 12 V battery/batteries, locked doors can no longer be unlocked and electrically adjustable systems, such as the steering wheel or seat adjustment, are deactivated.

WARNING
Insulating gloves as per DIN VDE 0680 or EN 60903 must be worn when releasing and disconnecting the HV connector on the HV battery.

Rescue crews should only unplug the HV connector when

- they have appropriate training or professional qualifications
- there are no bare HV cables or bare HV battery components within a radius of 20 cm from the HV battery connector
Overview of hybrid components in S 400 HYBRID (model 221.09)

1 High-voltage battery module
2 DC/DC converter module
3 Power electronics module
4 Electric motor
5 Pedal assembly
6 RBS brake booster
7 Electric vacuum pump
8 Electric refrigerant compressor
9 Low-temperature cooler
10 Low-temperature circuit circulation pumps
11 Electrohydraulic power steering
12 Hydraulic unit with regenerative braking system control unit
Hybrid concept

High-voltage battery module

The high-voltage battery module is located on the firewall on the right in the engine compartment.

NOTE

When working on high-voltage components observe the instructions in the "High-voltage systems" chapter (pages 117-119).
smart fortwo electric drive

December 2009 saw the launch of the smart fortwo in model series 451 with electric drive system. The new smart fortwo electric drive is available in coupé and cabrio versions.

The power supply in the smart fortwo electric drive is implemented in two on-board electrical systems:

- 12 V on-board electrical system with 12 V battery
- High voltage on-board electrical system with high-voltage battery

Safety function after an accident:

Shutoff of the high-voltage system

1) The high-voltage battery is shut off and the high-voltage components are discharged automatically following a rollover by means of a safety inertia switch.

2) The automatic shutoff is performed by the airbag control unit when the emergency tensioning retractors (stage 1) or the front airbags (stage 2) are triggered.

Removing the voltage from the vehicle

Withdrawing the ignition key removes the voltage from the 12 V on-board electrical system and the high-voltage electrical system.

Disconnecting the 12 V battery

The 12 V battery is located in a well in the passenger-side footwell. Disconnecting the 12 V battery automatically shuts off the high-voltage on-board electrical system.

NOTE

When working on high-voltage components observe the instructions in the "High-voltage systems" chapter (pages 117-119).
Electric drive system

Service Disconnect plug on high-voltage battery

On the underside of the high-voltage battery on the left-hand side there is a Service Disconnect plug (HV connector).

Unplugging the Service Disconnect plug:
- Ignition "OFF"
- Remove cap of Service Disconnect plug on underside of HV battery
- Pull Service Disconnect plug out of high-voltage battery

NOTE

Insulating gloves as per DIN VDE 060 or EN 60903 must be worn when unplugging the Service Disconnect plug on the HV battery.

G5 High-voltage battery
1 Cap
2 Service Disconnect plug
Overview of high-voltage components

G5 High-voltage battery
M5 Electric drive motor
N24/3 High-voltage charger control unit
N116/1 Refrigerant compressor control unit (EAC)
N116/5 PDU high-voltage distributor control unit
N145 EDCM electric motor control unit
R23 High-voltage PTC heater
X58/23 Charger feed socket
Electric drive system

A-Class E-Cell

From November 2010 the A-Class of model series 169 will be available with electric drive system.

The power supply is implemented in two on-board electrical systems:

- 12 V on-board electrical system with 12 V battery
- High voltage on-board electrical system with high-voltage battery

Safety function after an accident:

Shutoff of the high-voltage system

1) The high-voltage battery is shut off and the high-voltage components are discharged automatically following a rollover by means of a pyrotechnical isolation switch.

2) The automatic shutoff is performed by the airbag control unit when the emergency tensioning retractors (stage 1) or the front airbags (stage 2) are triggered.

Removing the voltage from the vehicle

Withdrawing the ignition key removes the voltage from the 12 V on-board electrical system and the high-voltage electrical system.

Disconnecting the 12 V battery

The 12 V battery is located in the engine compartment. Disconnecting the 12 V battery automatically shuts off the high-voltage on-board electrical system.

NOTE

When working on high-voltage components observe the instructions in the “High-voltage systems” chapter (pages 117-119).
Overview of high-voltage components

1 Charger 1
2 Charger 2
3 Electric drive
4 High-voltage distributor module
5 High-voltage battery
6 Charging process control unit
7 Charge socket
8 High-voltage PTC heater
9 A/C compressor
Fuel cell drive system

B-Class F-Cell (model 245) with fuel cell drive

NOTE
When working on high-voltage components observe the instructions in the "High-voltage systems" chapter (pages 117-119).

NOTE
Before commencing any rescue action, make sure that the high-voltage and fuel systems are deactivated.

DANGER
Risk of explosion from escaping hydrogen.
Hydrogen does not burn visibly!
If malfunctions occur in the hydrogen system, the hydrogen alarm issues warnings. This is done by means of

- acoustic warnings
- messages in the multifunction display
- lighting of the red "hydrogen alarm and tank system" warning lamp [H₂] in the instrument cluster
- automatic activation of the hazard warning system when fueling

To avoid an explosion of the escaping hydrogen, the following instructions must be observed:

- Deactivate the hydrogen circuit.
- Keep all ignition sources away from the vehicle.
- Do not move the vehicle into enclosed spaces, e.g. into a garage or a tunnel.
- Avoid cutting or deforming the bodywork with rescue equipment in the vicinity of lines and components carrying hydrogen!
Features

The body, interior equipment and the location of the occupant restraint systems are the same as in the B-Class (model 245) with internal combustion engine.

Fuel cell system

The entire fuel cell system is located on the vehicle floor.

Power supply

The high-voltage battery is housed in the trunk floor. All high-voltage components are marked with an appropriate warning label alerting to the existence of a high voltage. High-voltage lines are orange.

The 12 V battery is located in the right of the engine compartment.

Fuel supply

Instead of a conventional fuel tank there are three cylindrical hydrogen tanks mounted on the vehicle floor in front of the rear axle. Hydrogen components are marked with an appropriate warning label, as are the two hydrogen lines between the fuel cell and the anode module.

Safety systems

Overloading of the high-voltage system is monitored, as are undervoltages and overvoltages. If the permissible limits are not maintained, the main contactors in the high-voltage distributor module and in the high-voltage battery open.

All the high-voltage connectors are monitored with an interlock signal. The interlock signal of all connectors is connected in series. When a connector is separated, the interlock signal is interrupted and the main contactors in the high-voltage distributor module and in the high-voltage battery are opened.

The hydrogen system is monitored by one sensor in the underfloor area between the anode module and the humidifier module, and one sensor above the valve unit of the center hydrogen tank, so that any hydrogen escaping in the event of a malfunction can be detected immediately. As soon as escaping hydrogen is detected, the red "hydrogen alarm and tank system" warning lamp \(\text{H}_2 \) in the instrument cluster lights up. The sensors are activated when the vehicle is unlocked (actuation of the transmitter key).
Fuel cell drive system

Advanced crash safety

In addition to triggering the conventional systems (airbags, emergency tensioning retractors), the hydrogen supply and the high-voltage system in a fuel cell vehicle are deactivated by the pyrotechnic isolation element in the event of a crash. The pyrotechnical isolation element is triggered by the restraint systems control unit. As a result:

- the main contactors in the high-voltage distributor module and in the high-voltage battery open
- the electric drive control unit activates a short circuit in the motor winding and then performs a rapid discharge of all capacitors on the central high-voltage circuit. The active short circuit is intended to prevent the drive system from generating a voltage (if the vehicle rolls on after the impact).
- the hydrogen tank control unit closes the tank system shutoff valves 1-3. The fuel cell measurement control unit closes the fuel cell system shutoff valve. These measures prevent the further escape of hydrogen from the tank system.

Disconnecting the 12 V battery

The 12 V battery is located on the firewall on the right in the engine compartment.

Deactivating the high-voltage system

The service interruption separation point is located on the top of the refrigerant compressor in the left side of the engine compartment. If the service interruption separation point is opened, the interlock signal is interrupted. As a result the main contactors in the high-voltage distributor module and in the high-voltage battery are opened and the tank system shutoff valves 1-3 are closed.

Unplugging the service interruption separation point connector:

- Pull the retaining ring (1) upwards
- Unplug the service interruption separation point connector (2)

Switching off the drive system

- Move the selector lever to position P
- Turn the key in the ignition lock to position 0 and remove

The drive system is switched off and actively discharged.

Switching off the drive system

- Move the selector lever to position P
- Turn the key in the ignition lock to position 0 and remove

The drive system is switched off and actively discharged.
Vent line

The vent line leads from the three tank system shutoff valves to the rear. The outlet at the rear is in the center of the mounting frame of the hydrogen tanks and is sealed with a protective cap.

Overpressure safeguard

In the event of a malfunction of the hydrogen pressure regulator in the fuel system, the pressure relief valve opens and enables the controlled release of the hydrogen via the vent line into the atmosphere. The pressure relief valve opens at pressures above approx. 16 bar. The protective cap on the outlet of the vent line is blown off by the pressure of the escaping hydrogen.

Overtemperature safeguard

An overtemperature safeguard is integrated in the tank system shutoff valve on each of the hydrogen tanks.

The overtemperature safeguard prevents the hydrogen tanks from bursting under the effects of heat. At temperatures > 110 °C the overtemperature safeguard opens and allows a controlled escape of the hydrogen via the vent line.

NOTE

A blown protective cap on the outlet can be an indication that hydrogen has been or is being vented into the atmosphere via the vent line!
Fuel cell drive system

Overview of high-voltage system

1. Air module high-voltage compressor
2. Hydrogen recirculation blower

A9 Refrigerant compressor
G5 High-voltage battery
M5 Electric motor
M91/1 High-temperature coolant pump
N82 Battery management system control unit
N83/3 DC/DC converter control unit
N116/6 High-voltage distributor module
X153 Service interruption separation point
Overview of fuel system

1 Filler neck
2 Hydrogen tank
3 Fuel cell
4 Anode module

Y4/16 Tank system shutoff valve 1
Y4/17 Tank system shutoff valve 2
Y4/18 Tank system shutoff valve 3
Y58/16 Fuel cell system shutoff valve
Active engine hood

In order to reduce the accident loads for pedestrians and cyclists, an active engine hood is installed as standard equipment in model series 207, 212 and 166.

The system is designed to operate in a vehicle speed range of 25 - 55 km/h.

In the event of a collision with a pedestrian, the appropriate pedestrian protection sensor transmits a signal to the airbag control unit. This actuates the spring-loaded engine hood lifters in the area of the hood hinges, which raise the hood by approx. 50 mm. The additional space gained between the engine hood and components in the engine compartment results in an efficient and gentle deceleration when impacted by the pedestrian's head.

The deformation properties of the hood were developed specifically to meet these requirements. The use of aluminum and a homogeneous inner part on the inside of the engine hood further reduce the loads during an impact.

NOTE

The hood clamping lever must be disconnected before the hood is moved to the vertical position, and reconnected before the hood is closed.

Additional information on resetting the hood and on continuing to drive with the hood triggered can be found in the owner's manual.

Interactive owner's manual on the internet at: www.mercedes-benz.de/betriebsanleitung
Location of airbags:
The airbags in Mercedes-Benz passenger car model series are located as follows if equipped:

- In the steering wheel (driver airbag)
- Above or in place of the glove box in the instrument panel (front passenger airbag)
- In the doors (sidebags or head/thorax sidebags)
- In the outer areas of the seat backrests (front sidebags or head/thorax sidebags)
- In the area of the roof pillars and side roof frame (windowbags)
- In the lower area of the instrument panel (knee airbags)

Depending on the model series, the position of each airbag is recognizable by the symbol "SRS AIRBAG" or "AIRBAG" on the airbag or in the immediate vicinity of the installation location.

Location of battery:
The battery in Mercedes-Benz passenger car model series is located as follows if equipped:

- In the engine compartment
- In the right front of the passenger compartment
- Under the left or right rear seat
- Under the driver seat
- Under the front passenger seat
- In the luggage or load compartment

On vehicles with two batteries

- E-Class (model 211) up to 31.05.06
- CL-Class (model 216)
- CLS-Class (model 219) up to 31.05.06
- S-Class (model 221)
- SL-Class (model 230)
- M-Class (model 166)

one battery is located in the trunk and one battery is located in the engine compartment.

On the SLR McLaren (model 199) both batteries are located in the trunk.

All models are fitted with a prefuse which breaks the connection between the alternator and the positive battery terminal in the event of a short circuit, thus eliminating one potential source of fire.

SLK-Class vehicles (model 171) with compressor engine are equipped with a cutoff relay (alternator/battery) or a prefuse. The cutoff relay interrupts the connection between the alternator and the positive battery terminal in the event of a crash involving activation of an airbag or the seat belt emergency tensioning retractors. This prevents possible short circuits caused by deformed vehicle parts. The cutoff relay is activated on "Ignition ON" and is triggered directly by the airbag control unit.
General

Location of structural reinforcements:

The structural reinforcements of relevance to rescue operations are all located in the region of the passenger cell.

The layout of the side protection elements differs according to the model series concerned. These include in particular the A, B and C-pillars, all the roof frames and the door areas. With regard to the doors, the significant areas are the end faces of the doors (hinge or lock area) and all the longitudinal and lateral reinforcements running between the door end faces. Tubular door reinforcements are installed at the height of the car bumpers.

Location of fuel tank:

The fuel tank in the Mercedes-Benz passenger car model series is located in the area in front or above the rear axle or under the loading floor.

The fuel lines are routed in protected areas along the center tunnel or the side skirt and are mainly made of metal. In the engine compartment they are routed such that in the event of a deformation of the front end as a consequence of a head-on collision a fuel line can for the most part not be ripped off.

The fuel pump is automatically switched off if the airbags are activated or if the engine switches off.

The illustrations on the following pages show the possible location of airbags, batteries, structural reinforcements and fuel tanks.

Some of the airbags are only available as special equipment. In other words, not all the airbags listed are necessarily present in each vehicle model.

NOTE

The tubular door reinforcements between the end faces of the doors, the A and B-pillar reinforcements and the retractable top linkage on convertibles and roadsters cannot be cut using conventional fire brigade hydraulic cutting gear!

They are made of high-strength steel with a tensile strength significantly higher than 1000 N/mm², they have a tube diameter between 20 and 30 mm and a wall thickness of approx. 2 to 3 mm.
A-Class
(model 169)

1 Additional battery in BlueEFFICIENCY models

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
Sedan

A-Class E-Cell
(model 169)

1 12 V battery
2 High-voltage battery

- Airbag
- Gas generator
- Emergency tensioning retractor
- Gas filled strut
- Body reinforcement
- Rollover protection
- Fuel tank
- Battery
- High-voltage components
- Cutting points
- Control unit
A-Class
(model 176)

1 Power supply battery
2 Additional battery ECO Start-Stop

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
Sedan

B-Class
(model 245)

1 Additional battery BlueEFFICIENCY models
B-Class NGT with bivalent engine operation
(model 245)

1 Gas cylinder
2 Additional battery BlueEFFICIENCY models

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
Sedan

B-Class F-Cell with fuel cell drive
(model 245)

1 12 Volt battery
2 High-voltage battery
3 Hydrogen cylinder

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
B-Class
(model 246)

1 Power supply battery
2 Additional battery ECO Start-Stopp

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut

Body reinforcement
Rollover protection
Fuel tank
Control unit

Battery
High-voltage components
Cutting points
Sedan

C-Class
(model 204)

1 Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine and AMG, LHD
2 Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine and AMG, RHD
3 Power supply battery with 6-cylinder diesel engine, up to 30.11.2009 with 4- and 8-cylinder diesel engine and AMG
4 Additional battery ECO Start-Stopp
Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012

E-Class
(model 212)

1 LHD, with 4- and 6-cylinder engine, 8-cylinder engine as of MY 2011
2 RHD, with 4- and 6-cylinder engine, 8-cylinder engine as of MY 2011
3 with 8-cylinder engine (up to MY 2011)
4 Pelvisbag (as of 06.2009)
Sedan

E-Klasse NGT with bivalent engine operation
(model 212)

1 Fuel tank
2 Gas cylinder

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
E-Class HYBRID (model 212)

1 High-voltage battery
2 Power supply battery
3 Additional battery ECO Start-Stop

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
Sedan

S-Class
(model 221)

1. Battery (engine compartment, LHD)
2. Battery (engine compartment, RHD)
3. Battery trunk (up to 08.2008)
4. Kneebag driver (as of 09.2008)
S-Class HYBRID
(model 221)

1 High-voltage battery
2 Power supply battery

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
C-Class (model 204)

1. Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine and AMG, LHD
2. Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine and AMG, RHD
3. Power supply battery with 6-cylinder diesel engine, up to 30.11.2009 with 4- and 8-cylinder diesel engine and AMG
4. Additional battery ECO Start-Stop

T-Modell

C-Class (model 204)

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012

- **Airbag**
- **Body reinforcement**
- **Battery**
- **Gas generator**
- **Rollover protection**
- **High-voltage components**
- **Emergency tensioning retractor**
- **Fuel tank**
- **Cutting points**
- **Gas filled strut**
- **Control unit**
E-Class
(model 212)

1 LHD, with 4- and 6-cylinder engine, 8-cylinder engine as of MY 2011
2 RHD, with 4- and 6-cylinder engine, 8-cylinder engine as of MY 2011
3 with 8-cylinder engine (up to MY 2011)
4 Pelvisbag (as of 06.2009)
T-Modell

E-Class HYBRID
(model 212)

1 High-voltage battery
2 Power supply battery
3 Additional battery ECO Start-Stopp

Diagram:
- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit

E-Class HYBRID
(model 212)
CLC-Class
(model 203)

1 LHD vehicle
2 RHD vehicle

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut
Body reinforcement
Rollover protection
Fuel tank
Control unit
Battery
High-voltage components
Cutting points
Coupé

C-Class
(model 204)

1 Power supply battery, LHD
2 Power supply battery, RHD
3 Additional battery

<table>
<thead>
<tr>
<th>Airbag</th>
<th>Body reinforcement</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas generator</td>
<td>Rollover protection</td>
<td>High-voltage components</td>
</tr>
<tr>
<td>Emergency tensioning retractor</td>
<td>Fuel tank</td>
<td>Cutting points</td>
</tr>
<tr>
<td>Gas filled strut</td>
<td>Control unit</td>
<td></td>
</tr>
</tbody>
</table>
E-Class
(model 207)

1 Power supply battery, LHD
2 Power supply battery, RHD
3 Additional battery ECO Start-Stopp
CLS-Class

(model 218)

1. Power supply battery
2. Additional battery ECO-Start-Stopp
CLS-Class
Shooting Break
(model 218)

1 Power supply battery
2 Additional battery ECO-Start-Stopp
Coupé

CL-Class
(model 216)

1 Starter battery
2 Power supply battery
E-Class
(model 207)

1 Power supply battery, LHD
2 Power supply battery, RHD
3 Additional battery ECO Start-Stopp
Roadster

SLK-Class
(model 172)

1. Power supply battery, LHD
2. Power supply battery, RHD
3. Additional battery ECO Start-Stopp

<table>
<thead>
<tr>
<th>Airbag</th>
<th>Body reinforcement</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas generator</td>
<td>Rollover protection</td>
<td>High-voltage components</td>
</tr>
<tr>
<td>Emergency tensioning retractor</td>
<td>Fuel tank</td>
<td>Cutting points</td>
</tr>
<tr>
<td>Gas filled strut</td>
<td>Control unit</td>
<td></td>
</tr>
</tbody>
</table>
SL-Class
(model 230)

1. Starter battery LHD
2. Starter battery RHD
3. Power supply battery

Components:**
- Airbag
- Gas generator
- Emergency tensioning retractor
- Gas filled strut
- Body reinforcement
- Rollover protection
- Fuel tank
- Control unit
- Battery
- High-voltage components
- Cutting points
Roadster

SL-Class
(model 231)

1 Power supply battery
2 Additional battery ECO Start-Stopp

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit
SLR McLaren
(model 199)

1 Starter battery
2 Power supply battery

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut
Body reinforcement
Rollover protection
Fuel tank
Control unit
Battery
High-voltage components
Cutting points
Roadster

SLS AMG
(model 197)
Geländewagen

M-Class
(model 164)

1 Main battery
2 Additional battery

Airbag	Body reinforcement	Battery
Gas generator | Rollover protection | High-voltage components
Emergency tensioning retractor | Fuel tank | Cutting points
Gas filled strut | Control unit
M-Class HYBRID
(model 164)

1 Main battery
2 Additional battery
3 High-voltage battery

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit
M-Class
(model 166)

1 Main battery
2 Additional battery

<table>
<thead>
<tr>
<th>Airbag</th>
<th>Body reinforcement</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas generator</td>
<td>Rollover protection</td>
<td>High-voltage components</td>
</tr>
<tr>
<td>Emergency tensioning retractor</td>
<td>Fuel tank</td>
<td>Cutting points</td>
</tr>
<tr>
<td>Gas filled strut</td>
<td>Control unit</td>
<td></td>
</tr>
</tbody>
</table>
GL-Class
(model 164)

1 Main battery
2 Additional battery

Airbag | Body reinforcement | Battery
Gas generator | Rollover protection | High-voltage components
Emergency tensioning retractor | Fuel tank | Cutting points
Gas filled strut | Control unit
GL-Class
(model 166)

1 Main battery
2 Additional battery

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut

Body reinforcement
Rollover protection
Fuel tank
Control unit

Battery
High-voltage components
Cutting points
GLK-Class
(model 204)

1. Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine, LHD
2. Power supply battery with gasoline engine, as of 1.12.2009 with 4- and 8-cylinder diesel engine, RHD
3. Power supply battery with 6-cylinder diesel engine, up to 30.11.2009 with 4- and 8-cylinder diesel engine
4. Additional battery ECO Start-Stopp
G-Class
(model 463)

1 up to 09.96
2 as of 10.96 up to 11.2000
3 as of 12.2000
R-Class
(model 251)

1. Main battery
2. Additional battery
Van

Vaneo
(model 414)

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut
Body reinforcement
Rollover protection
Fuel tank
Battery
High-voltage components
Cutting points
Control unit

Mercedes-Benz model classes

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
Citan Van
(model 415)
Van

Viano/Vito
(model 639)
Reisemobil

Viano
FUN
(model 639)
Sprinter James Cook
(model 901-905)

1. Starter battery
2. Additional battery
3. Gas cylinder (Camping Gaz, 2x5 kg)

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit
-"
Reisemobil

Sprinter James Cook
(model 906)

1 Starter battery
2 Additional battery (LHD)
3 Additional battery (RHD)
4 Gas cylinder (Camping Gaz, 2.75 kg)

Airbag Body reinforcement Battery
Gas generator Rollover protection High-voltage components
Emergency tensioning retractor Fuel tank Cutting points
Gas filled strut Control unit
Location of airbags:

The Maybach is equipped with the following airbags:

- Driver airbag (in steering wheel)
- Front passenger airbag (above glove compartment in instrument panel)
- Front and rear sidebags (on outside of backrests)
- Front windowbags (in area of A-pillars and side roof frame)
- Rear windowbags (in area of side roof frame and C-pillars)

The position of each airbag is recognizable by the symbol "SRS AIRBAG" or "AIRBAG" on the airbag or in the immediate vicinity of the installation location.
Location of batteries:

The Maybach has a 2-battery on-board electrical system:
- Starter battery in engine compartment
- Power supply battery on right side of trunk

All models are fitted with a prefuse which breaks the connection between the alternator and the positive battery terminal in the event of a short circuit, thus eliminating one potential source of fire.

IMPORTANT

Both batteries must be disconnected to de-energize the vehicle!

The batteries are electrically connected via a cutoff relay which is switched by the on-board electrical system control unit.

In the event of a malfunction in the on-board electrical system (e.g. due to a discharged power supply battery), the starter battery supplies power to the on-board electrical system in limp-home mode.
Bodyshell structure:

One special feature of the Maybach is a continuous reinforcement made of high-strength steel that is installed in the A-pillar, the front section of the side roof frame and the B-pillar. The frame provides extra protection in the case of frontal collisions, side impacts and rollovers.

Location of fuel tank:

The fuel tank is located in the area in front of and above the rear axle.

The fuel lines are routed in protected areas along the center tunnel or the side skirt and are mainly made of metal. In the engine compartment they are routed such that in the event of a deformation of the front end as a consequence of a head-on collision a fuel line can for the most part not be ripped off.

The fuel pump is automatically switched off if the airbags are activated or if the engine switches off.

1 IMPORTANT

The tubular frame made of high-strength steel cannot normally be cut using standard rescue shears.

If cutting the tubular frame is unavoidable for rescue-related reasons, this must be done using angle grinders or similar tools.
Maybach 57/62

Maybach
(model 240)

1 Starter battery
2 Power supply battery

Airbag
Gas generator
Emergency tensioning retractor
Gas filled strut
Body reinforcement
Rollover protection
Fuel tank
Control unit
Battery
High-voltage components
Cutting points
Location of airbags:

The airbags in the smart model series are located:

- In the steering wheel (driver airbag)
- Above or in place of the glove box in the instrument panel (front passenger airbag)
- In the outer areas of the seat backrests (sidebags or head/thorax sidebags)
- In the area of the roof pillars and side roof frame (windowbags: only smart forfour)

The position of each airbag is recognizable by the symbol "SRS AIRBAG" or "AIRBAG" on the airbag or in the immediate vicinity of the installation location.

Location of battery:

smart fortwo coupé and cabrio:
In the front passenger footwell

smart roadster and roadster coupé:
In the front luggage well

smart forfour:
On the left in the engine compartment

Location of structural reinforcements:

The structural reinforcements of relevance to rescue operations are all located in the region of the passenger cell.

The actual layout of the structural reinforcement elements varies according to the individual model series.
General

Location of fuel tank:

The fuel tank is located in the area in front of the rear axle on the smart model series.

The fuel lines run in protected areas and are made of plastic. In the engine compartment they are routed so that in the event of a deformation of the body structure as a consequence of a frontal or rear-end collision, the fuel lines cannot normally be ripped off.

The fuel pump is automatically switched off if the airbags are activated or if the engine switches off.

The illustrations on the following pages show the possible location of airbags, batteries, structural reinforcements and fuel tanks.

Some of the airbags are only available as special equipment. In other words, not all the airbags listed are necessarily present in each vehicle model.
smart fortwo coupé
(model 450)

1 LHD vehicle
2 RHD vehicle
3 Fuel tank, vehicle with diesel engine
4 Fuel tank, vehicle with gasoline engine

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit
smart fortwo

smart fortwo cabrio
(model 450)

1 LHD vehicle
2 RHD vehicle
3 Fuel tank, vehicle with diesel engine
4 Fuel tank, vehicle with gasoline engine

<table>
<thead>
<tr>
<th>Airbag</th>
<th>Body reinforcement</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas generator</td>
<td>Rollover protection</td>
<td>High-voltage components</td>
</tr>
<tr>
<td>Emergency tensioning retractor</td>
<td>Fuel tank</td>
<td>Cutting points</td>
</tr>
<tr>
<td>Gas filled strut</td>
<td>Control unit</td>
<td></td>
</tr>
</tbody>
</table>
smart fortwo coupé
(model 451)

1 LHD vehicle
2 RHD vehicle

- Airbag
- Gas generator
- Emergency tensioning retractor
- Gas filled strut
- Body reinforcement
- Rollover protection
- Fuel tank
- Battery
- High-voltage components
- Cutting points
- Control unit
smart fortwo

smart fortwo cabrio
(model 451)

1. LHD vehicle
2. RHD vehicle

<table>
<thead>
<tr>
<th>Component</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airbag</td>
<td></td>
</tr>
<tr>
<td>Body reinforcement</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Gas generator</td>
<td></td>
</tr>
<tr>
<td>Rollover protection</td>
<td></td>
</tr>
<tr>
<td>High-voltage</td>
<td></td>
</tr>
<tr>
<td>components</td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td></td>
</tr>
<tr>
<td>tensioning retractor</td>
<td></td>
</tr>
<tr>
<td>Fuel tank</td>
<td></td>
</tr>
<tr>
<td>Cutting points</td>
<td></td>
</tr>
<tr>
<td>Control unit</td>
<td></td>
</tr>
</tbody>
</table>
smart fortwo coupé
electric drive
(model 451)

1 12 V battery
2 High-voltage battery
smart fortwo

cabrio
electric drive
(model 451)

1 12 V battery
2 High-voltage battery
smart roadster

(model 452)

- Airbag
- Body reinforcement
- Battery
- Gas generator
- Rollover protection
- High-voltage components
- Emergency tensioning retractor
- Fuel tank
- Cutting points
- Gas filled strut
- Control unit

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
smart roadster coupé

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012

Gas generator
Airbag
Emergency tensioning retractor
Gas filled strut

Body reinforcement
Rollover protection
Fuel tank
Control unit

Battery
High-voltage components
Cutting points

(model 452)
smart forfour

(model 454)
Safety concept

Integral safety

The term "Integral safety" is understood to refer to the pooling of all automobile safety aspects and details and their processing with the aim of achieving the maximum level of safety for the customer.

"Integral safety" is based on the following modules:

Safe driving

This includes aspects of active safety i.e. safety features and equipment that help to prevent dangers from occurring in the first place, that warn the driver of dangers in advance or that assist him or her in critical driving situations. In short, all the measures that can help to prevent an accident from even occurring.

Examples:
- Night View Assist
- DISTRONIC PLUS
- ADAPTIVE BRAKE
- Adaptive brake lights
- AIRMATIC or ABC
- Intelligent Light System
- Tire pressure monitor
- Multicontour seat
- Aero wipers

When hazards occur (PRE-SAFE)

The term PRE-SAFE refers to preventive occupant protection i.e. systems that act preventively in hazardous situations. Depending on the vehicle model, vehicle equipment and driving situation, PRE-SAFE can initiate a range of actions.

Examples:
- Reversible emergency tensioning retraction of front seat belts
- Positioning of front passenger seat and individual rear seats
- Closing of side windows
- Closing of the sliding roof
- BAS PLUS
- PRE-SAFE brake
During an accident

This primarily includes aspects of passive safety, i.e. the construction of the shape-stability passenger cell and those systems and equipment that may become active during an accident.

Examples:

• Adaptive belt force limitation
• Sidebags
• Two-stage driver and front passenger airbags
• Pressure sensors in doors

After an accident

This component includes systems and safety measures that, depending on the type of accident and severity of the collision, may become active after an accident in order to facilitate rescue of the vehicle occupants, reduce consequential damage and make finding the vehicle easier.

Examples:

• Cutting point markings on A-pillars and C-pillars
• Internet Guidelines for Rescue Services
• Automatic door unlocking
• Automatic engine OFF feature
• Interruption of the fuel supply
• Automatic partial opening of the windows to ventilate the interior compartment
Adaptable accident protection

The design of the bodyshell structure and the occupant restraint systems provide a high level of protection matched to the circumstances of the particular accident.

Airbags

The vehicle has the following airbags depending on the vehicle model and vehicle equipment installed:

- Driver and front passenger airbags with two-stage situation-dependent triggering
- Kneebags
- Sidebags
- Pelvisbags
- Head/thorax sidebags
- Windowbags
- Headbags

Seat belts

Depending on the vehicle model and equipment installed, the three-point seat belts for driver and front passenger feature:

- Emergency tensioning retractors and adaptive belt force limitation
- Automatic seat belt height adjustment
- An electrically controlled belt comfort-fit function and belt use recognition

Depending on the model series, the three-point belt in the rear can be equipped with automatic seat belt height adjustment, reel tensioners and belt force limiters on the two outboard seats.

The electrically-adjustable individual rear seats, for example in the S-Class (model 221), are also equipped with an electrically controlled belt comfort-fit function with seat belt buckles that move with the seat.

Airbags and seat belts, shown on model 221 (S-Class)
Reducing the consequences of an accident

A range of safety features and equipment operate to try and prevent accidents where possible and then to provide the best possible protection if an accident is unavoidable.

Nevertheless, Mercedes-Benz continues to innovate and work hard to make occupant rescue easier and to prevent the situation from becoming worse after an accident has occurred.

Depending on the vehicle model, type of accident and severity of the collision, the following features may improve safety:

- Automatic shutoff of fuel supply to prevent fire
- Activation of hazard warning system to alert other road users and make it easier to find the vehicle in the dark
- Automatic door unlocking to allow access to the occupants more quickly
- Online version of Guidelines for Rescue Services.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Active Body Control</td>
</tr>
<tr>
<td>AKSE</td>
<td>Automatic child seat recognition (ACSR)</td>
</tr>
<tr>
<td>BAS</td>
<td>Brake Assist</td>
</tr>
<tr>
<td>BMS</td>
<td>Battery management system</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CFK</td>
<td>Carbon fiber reinforced plastic (CRP)</td>
</tr>
<tr>
<td>CMS</td>
<td>Crash Management System</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed natural gas</td>
</tr>
<tr>
<td>DAS</td>
<td>Diagnosis Assistance System</td>
</tr>
<tr>
<td>EDCM</td>
<td>Electric Drive Control Module</td>
</tr>
<tr>
<td>ESG</td>
<td>Single-pane safety glass</td>
</tr>
<tr>
<td>ESP</td>
<td>Electronic Stability Program</td>
</tr>
<tr>
<td>HV</td>
<td>High voltage</td>
</tr>
<tr>
<td>HVIL</td>
<td>High-voltage interlock</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>LV</td>
<td>Low voltage</td>
</tr>
<tr>
<td>ME</td>
<td>Motor electronics (ME-SFI)</td>
</tr>
<tr>
<td>NGT</td>
<td>Natural Gas Technology</td>
</tr>
<tr>
<td>PC</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>PDU</td>
<td>Power distribution unit</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive temperature coefficient</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>RBS</td>
<td>Regenerative braking system</td>
</tr>
<tr>
<td>SRB</td>
<td>Fuse and relay box</td>
</tr>
<tr>
<td>SRS</td>
<td>Supplemental restraint system</td>
</tr>
<tr>
<td>VSG</td>
<td>Laminated safety glass</td>
</tr>
</tbody>
</table>
Index

A
Airbag 139, 185, 189, 202

B
Battery 139, 186, 189
Blast trauma 43
Bodyshell 17
 CL-Class 16
 Maybach 17
 SLR McLaren 18
 smart fortwo 20
Buckle emergency tensioning retractor 109

C
Carbon fiber composite material 18
Central locking
 Emergency opening 30
Cervical collar 10, 88
CNG control unit 115, 116, 120
Convertible soft top 52, 53
 Emergency opening 52
 Soft top frame 53
Coupé roof 50, 67
Cutting mark 44, 46, 48, 49

D
Driver airbag 102, 110

E
Easy entry/exit feature 94
Electric drive motor 129
Emergency tensioning retractor
 Reversible 109
Endless sling 24
Engine hood lifters 138

F
Fire brigade safety lines 46, 58, 65
Fire classes 11
Flow limiter 118, 121
Folding top 65, 66
Front passenger airbag 102, 105, 110
Fuel cell drive system 11
Fuel cell system 133
Fuel system
 Overview 137
Fuel tank 140, 187, 190
Fuse .. 118, 121

G
Gas cylinder 115, 116, 119, 120, 121
Gas generator 12, 104
Gas pressure regulator 115, 116, 117
Glass roof 27, 61
Glass saw 26
Gullwing doors 79

H
Halligan tool 28
Hazard warning system 30
Head restraints
 Electrically adjustable 89
 Manually adjustable 89, 91
 Removal 88
Head/thorax sidebag 102
High-voltage battery 126, 128, 129, 133
High-voltage components
 Overview 129, 136
Hydrogen 133
Hydrogen tank 133, 137

Guidelines for Rescue Services, Passenger Cars 2012 • Issue Date: September 2012
Index

I	Immediate measures at scene of accident ... 10
	Instrument panel ... 68
	Integral safety .. 200
	After an accident ... 201
	During an accident ... 201
	Safe driving .. 200
	When hazards occur ... 200
K	KEYLESS-GO ... 29
	Knee airbag .. 102
L	Laminated safety glass .. 25, 26
M	Magnesium ... 11
	Mirror .. 13
	Monocoque ... 19
N	Natural gas drive ... 11
	NECK-PRO head restraints ... 89
O	Overpressure safeguard .. 135
	Overtemperature safeguard .. 135
P	Panoramic Vario roof ... 51
	Passenger car support system .. 24
	Pelvisbag .. 102, 103
	Pendulum jigsaw .. 26
	Pillar protection ... 49
	Plastic roof .. 61
	Pressure regulating unit .. 120
	Protective cover set .. 43, 49
	Pyrotechnical initiator ... 81
R	Rescue ram ... 69, 73
	Restraint systems ... 12
	Rocker panel attachment ... 69, 73, 78
	Roll bar ... 99
S	Safety armature for gas cylinder ... 118, 121
	Safety shutoff valve ... 118
	Seat adjustment ... 85, 86
	Fully electric ... 85
	Manual ... 87
	Partially electric .. 85
	Seat belts .. 202
	Sectional ladder ... 23
	Service Disconnect plug ... 128
	Service interruption separation point ... 134
	Shutoff valve .. 118, 121
	Sidebag ... 102, 110
	Single-pane safety glass ... 25, 27, 53, 62, 65
	Steering column ... 92, 94
	Steering column adjustment ... 92, 93
	Structural reinforcements .. 48, 140, 189
U	Underfloor sliding blocks ... 22
V	Vario roof .. 50
	Vehicle roof .. 43
	Vent line .. 135
W	Windowbag ... 12, 47, 102, 110
	Wooden blocks ... 22
Guidelines for Rescue Services
Passenger Cars

Mercedes-Benz • AMG • McLaren • Maybach • smart